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Abstract

In spite of the growing use of glass in 
architecture, there has been no rigorous 
and complete method of structural glass 
designing so far.

Our research aims at a new and 
flexible approach to the problem. 
On the basis of structural reliability 
and fracture mechanics, a useful 
mathematical model of glass behaviour 
can be developed and applied to most 
cases, as for example to glass plates or 
glass beams subjected to various load 
histories.

Introduction

The difference between glass and 
other more commonly used materials 
consists in its fragility and this makes it 
difficult to develop analytic methods of 
structural dimensioning.

It is now generally accepted that 
glass failure does not occur when 
the theoretical tensile strength based 
on molecular forces is reached, but 
rather as a consequence of cracks 
due to production flaws that cannot 
be avoided, or to mechanical surface 
damage [2]. The cracks grow under 
tensile stresses until a critical depth at 
which the growth becomes unstable 
and this leads to the immediate 
breakage of the glass element.

The subcritical crack growth – also 
known as stress corrosion, or static 
fatigue – depends on the initial flaw 
distribution as well as on the entire 
stress history to which the flaw 
surrounding area has been subjected. 
It also depends on environmental 
conditions, above all humidity, that glass 
is exposed to. 

The glass failure event can therefore 
be defined as extremely complex and 
aleatory.

The existing methods tend to bypass 
the aleatory property of glass failure 
by introducing equivalent quantities 
corrected by adequate coefficients. The 
main methods may be distinguished as 
follows:

admissible stress methods, often 
adopted by producers or e.g. in [3];
“American” methods: based on 
GFPM – Glass Failure Prediction Model 
[4,5,6];
“European” methods [7,8,9,10,11].

•

•

•

The Lifetime Prediction Model (LPM) method, described in [12], 
in which the failure probability has been considered as depending 
on probability distribution of initial flaws, is an exception. The Crack 
Size Design described in [13] is also worth mentioning. In each point 
it presumes the existence of a design crack that equals a fractile of 
probability distribution of initial flaws for the whole pane. 

No method found in the bibliography deals with the probabilistic 
property of load history, unless in order to define a stress fractile (the 
semi probabilistic method).

On the contrary, this paper aims at the direct involvement of the 
load history aleatority in the model by producing some simplifications. 
This method has been developed in [1].

Objectives

The present paper proposes a model which describes the reaching of 
the failure event at a particular point.

The definition of point in this paper can be understood as any pane 
point or any finite element deriving from pane discretization. In the 
following only the surface points will be referred to, because they 
use to produce major flaws and they are susceptible to mechanical 
damage and to higher stress (i.e. in case of flexural behaviour). The 
same method can be extended to internal points, provided that some 
parameters have been changed.

Irwin’s proposal [14] consists in a verification based on so called 
stress intensity factor K: the brittle failure occurs when K becomes 
equal to Kcr, this is a material constant.

   (1)

where
is the nominal stress perpendicular to the crack plane;

 is the crack depth;
Y is a correction factor depending on the crack shape;
t is time.
The model is aimed at defining the glass element lifetime T(X0), that is 
the time it takes to reach Kcr for the first time, being X0 = 
the initial state.

If T is a random variable, then the n-order moments are needed in 
order to determine T.

(2)

given that
p x  is the probability that T = x;
x  is the expected value of x.

If the moments are known it will be easy to calculate the distribution 
mean and variance:

  (3)

Hypotheses

The failure under tensile stresses occurs only when K equals Kcr, that 
is to say at the event of the unstable crack growth: theoretical 
tensile strength is considered infinite.

On the contrary, the failure under compressive stresses occurs when 
 equals c.

The probability to reach failure in the infinite time equals 1.
Initially there is a crack in every point; the crack depth 0 follows the 

1.

2.

3.
4.
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given probability distribution.
The mechanical crack behaviour follows the elastic fracture mechanics with the mode I propagation.

The empiric equation from [15] in particular is considered valid
    (4)

where S,N are parameters depending on environmental conditions, i.e. mainly atmospheric humidity. Their probability 
distributions are important to this model. Below they are considered as both known and constant, as they are, for example, 
in an indoor setting. This equation is true for K>Kth, where is a threshold value of the stress intensity factor. In [12] it is shown 
that considering 

is not only a safe assumption for design purposes but it is also practically irrelevant. The phenomenon of crack 
healing can also be neglected.
The crack depth always remains infinitesimal compared to glass pane thickness, the crack shape does not affect the 
phenomenon. Therefore  [15].
The major principal stress at a point is always perpendicular to the crack plane (safe assumption [12]).
The stress and the crack depth are random variables and their evolution depends only on their present values and not on 
their history (Markov property).
The relation between these variables at two different times t1 and t2 does not depend on t1 and t2 but rather on t2 -t1.

Markov Process

The phenomenon is analysed as the stochastic Markov process, i.e. a time succession of random variables, the distribution of 
which is fully known if the state of the variable at one and sole preceding instant is also known. This can be expressed as follows:

In order to model glass behaviour Markov process with two variables has been introduced:
the nominal stress (t) occurring normally at the crack; 

2. crack depth (t).
The state variable is therefore .
It is logical to hypothesize that there is no memory for  if the crack propagation speed is not excessive. On the contrary, the 
stress does not always show Markovian behaviour. Consider a component subject to a moving load; we can easily presume that 
the stresses in a temporal dimension are closely interrelated. Nevertheless, interesting results can be achieved with a Markovian 
stress history as well. For further details see [1]. 
The process is fully defined if its initial value  and the 

increment function  have been defined.
It can be demonstrated [16] that

  (5)

given that  are normally distributed with M,V respectively mean and covariance matrices.

        (6)

While the distribution regarding d /dt is closely dependent on the examined case, d /dt can be defined after dsigma has been 
determined. Indeed:

  (7)

   (8)

  (9)

where .

However, as has already been mentioned, we can consider  without altering the results too much. The approximation 
simplifies the calculation because it is only a condition and not a condition between and , but the approximation is not 
strictly necessary.

The hypothesis 9 implies that the process is stationary [16].

Life-expectation assessment depending on the initial conditions

As a consequence of random processes, the lifetime T is represented by a probability distribution.

        (10)

From the backward Fokker-Planck equation extended to the bidimensional case [16]

5.
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9.
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        (11)

considering that in case of a stationary process it occurs that

(12)

by integrating in d  dK similarily to the equation (10) the following result is obtained:

     (13)

From (10) it can be infered that 1-G is the cumulative distribution function of T, thus the T probability density function is

(14)

And the moments of T, given by the equation (2), become

(15)

By integrating by parts the following is obtained

   (16)

Now we can multiply by tn-1and integrate in time the (13), and substitute the equation (15) in the left hand side term and the 
equation (16) in the right hand side term. The result will be a differential equation system depending on the Tn moments:

  
     (17)

with boundary conditions

     (18)

expression of the cases in which the initial condition immediately leads to failure. 
The following boundary condition can be added in order to solve the differential equations:

  (19)

given that  max is a large crack depth, which is very unlikely reached.
General equations can be simplified by using . In this case can be assumed and d , once X has been fixed, 

becomes deterministic. Thus = =0.
By means of these equations the Tn can be determined and consequently the mean and the variance of T. If the order 

moments superior to the second order are neglected, the mean and the variance give us a complete characterization of the T
probability distribution depending on X0.

Examination of initial flaw distribution

Note that the initial flaw distribution has not been treated so far, as the issue has been uncoupled from the stress history. Hence 
let us consider the T distribution dependent on ( 0, 0); the introduction of a probability law 0 for should be sufficient to obtain 
a T distribution depending on 0 alone.

   (20)

The most frequently adopted distributions in research related to this subject for 0 are the following [8,10,12,13]:
Pareto distribution (punctual) [12];
Weibull distribution of extreme values (for the pertinence area of a finite element).

In our model we are not considering the crack extending due to mechanical damage, but it can be introduced through stresses 
(forecasting temporally limited peaks) or through the introduction of a “worst case” scenario for initial flaws.

•
•
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Lifetime distribution

If 0 is taken for granted, the T probability distribution function p(T=t) can be reached. This function expresses directly the local 
reliability. In case that the function is normally distributed it can be seen that:

(21)

given that N(x,y) is the normal random variable with the mean x and the variance y.
It is possible to search for the real T distribution by calculating the order moments superior to the second order and by solving 

other differential equations, which are analogous to (17).
The final verification is carried out on the probabilistic level by confronting two probabilities:

  (22)

where
td is the required design lifetime;
pfd is the maximum allowed failure probability.
pfd depends on the structural importance of the detail and on the existence of post-failure resources.

Extension from Point to Whole Pane or Beam

There are numerous modes of extending the method from point to whole glass pane or beam:
Subdivision in finite elements: Points become nodes in the FE model. Each node is associated to distribution of maximum initial 
flaws present in the pertinence area and stresses deriving from analysis. The survival probability is given from the product of all 
the node survival probabilities, after the joint survival probability has been deducted.
Subdivision in comparable stress zones: Panes or beams are divided into zones with a reasonably uniform stress distribution. 
For each zone, the maximum stress and the probability distribution of maximum initial flaws on the relevant area should be 
considered. The advantage of this method is that it can be applied in case of zones which bear much higher stresses than 
others and/or which present larger cracks (for example beam edges). The analysis could be restricted to these zones only, and 
the survival probability is given from the product of all the zone survival probabilities, after the joint survival probability has 
been deducted. 
Crack Size Design: The most immediate, but perhaps overly safety-oriented procedure involves considering the major initial 
flaw and the major stress for the whole component. The verification is carried out as a point verification.

Examples

Liouville processes. Liouville processes are deterministic, that is to say with the nil variance. The equations (17) become

    (23)

Constant stress 
The obtained equation is identical to the already known equation of classical stress corrosion theory [2]:

(24)

where  is the critical crack size.

Uniformly growing stress:  and constant

    (25)

Real stochastic processes
Almost uniformly growing stress:  

W(0, )is a white noise with the nil mean and a constant  variance,  is a constant.

     (26)

•

•

•

•

•
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Summary and Conclusions

This paper aims to propose a new 
approach to the reliability study of 
structural glass elements.

After having assumed specific 
hypotheses it is put forward that 
it is possible to model a random 
propagation of glass cracks as Markov 
stochastic process. The advantage 
of using this model is the possibility 
to obtain probability distributions 
of survival time of a glass element 
depending on probability law related 
to stress evolution during time, as well 
as the probability distribution of initial 
flaws.

This method can be extended to 
other cases but in these cases different 
equations are obtained. See [1] for more 
examples.

Knowing the probability distributions 
allows a verification to be elaborated on 
the probability level, i.e. a comparison 
between available reliability and target 
reliability depending on the structural 
importance of the detail.

The topic seems to be promising but 
it still requires an intensive research, 
which the authors are committing to at 
the moment, in order for the model to 
be fully developed.
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