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Abstract

A simple analytical extension of Hermite–Bresson’s results to the domain of the irreversible relative displacements allows the

description of the non-linear force–displacement response of a tensile bar embedded in a massive support by means of an elastic–plastic

bonding agent.

The analytical model evidences the influence of the main governing parameters on the attainment of two ideal anchorage conditions of

plasticity initiation occurring in the bar simultaneously with that of the bond material (anchorage length LIP), or of plasticity initiation

occurring in the bar just after the complete yielding of this one (anchorage length LCP).

The ratio between the expressions of these two anchorage lengths reveals an interesting, compact mathematical form of eloquent

mechanical meaning which allows the immediate determination of anchorage length LIP.

r 2006 Elsevier Ltd. All rights reserved.
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1To have an idea of the quantity of experimental and theoretical

contributions produced on this topic, and to realize that it is almost
1. Introduction

Bond action between heterogeneous materials is at the
basis of every composite structural behaviour, indifferently
if exerted by chemical adhesion of some gluing substance
or by mechanical indentation of the contact surfaces.

Its importance justifies the enormous amount of research
activity that has been dedicated to this topic until now.
Among all application fields, reinforced concrete seems to
be typically that one where bond problems have been most
widely and deeply investigated both under the aspect of the
traditional coupling of ribbed bars with cast-in-place
concrete masses or under the aspect of more recent
strengthening techniques where metallic or synthetic bars
are glued in drilled holes or grooves within already
hardened concrete supports [1], and metallic plates
are fixed on concrete surfaces by means of adhesive
materials [2].

Numberless experimental researches have evidenced
extremely many different aspects of this complex mechan-
e front matter r 2006 Elsevier Ltd. All rights reserved.
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ical action and generations of theoreticians have devoted
their investigations to the effort of developing always more
and more refined analytical and numerical models1 in order
to better describe and predict the most part of all these
experimental evidences.
Calculations of steel-to-concrete bond stress distribu-

tions were for example already performed by Losberg [7]
and Tepfers [8] who wrote in differential form the equation
previously introduced in finite terms by Bleich [9] to study
the distribution of shear forces in large riveted splices. This
direct analytical method, sometimes called K-value theory,
was also used by L’Hermite and Bresson [2] to model the
gluing of steel lamina in the reinforcing of concrete beams.
It is based on the hypothesis that bond stresses are directly
proportional to the relative displacement between steel and
concrete and, in spite of its simplicity, it reveals good in
impossible even trying to cite just a concise selection of the most important

papers, it is sufficient to give a look at the bibliographies contained in the

state-of-the-art reports which have been periodically published by CEB

[3,4], ACI Committee 408 [5] and more recently by FIB [6].

www.elsevier.com/locate/ijmecsci
dx.doi.org/10.1016/j.ijmecsci.2006.09.016
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Nomenclature

A1 cross section area of the metallic bar (cm2)
A2 cross section area of the support material (cm2)
E1 Young’s modulus of the metallic bar (daN/cm2)
E2 Young’s modulus of the support material (daN/

cm2)
FIP ratio between the yielding stress in the metallic

bar and the yielding stress in the bond springs
requested to have contemporary plasticity
initiation in both materials

FCP ratio between the yielding stress in the metallic
bar and the yielding stress in the bond springs
requested to have plasticity initiation in the bar
and complete plasticity in the bond springs

k stiffness of the bond springs per unit bond
surface and unit slip (daN/cm3)

K ¼ kS stiffness of the bond springs per unit length
and unit slip (daN/cm2)

Keq equivalent global stiffness of the entire anchor
in the elastic range (N/cm)

L anchorage length (cm )
LIP anchorage length corresponding to the yielding

initiation in the bond springs (cm)
LCP anchorage length corresponding to the com-

plete yielding of the bond springs (cm)
P applied tensile force (daN)
P0y applied tensile force corresponding to the

plasticity initiation in the bond springs (daN)
P00y applied tensile force corresponding to the

plasticity initiation in the metallic bar (daN)

P000y applied tensile force corresponding to the
complete plasticity of the bond springs (daN)

t ¼ St bond forces per unit length of the bar (daN/cm)
ty ¼ Sty yielding bond forces per unit length of the

bar (daN/cm)
DŴ 0 slip between metallic bar and embedding

material at the origin of the anchorage length
(cm)

W1(z) elastic displacement in the metallic bar (cm)
W2(z) elastic displacement in the embedding material

(cm)
Ŵ 1ðzÞ ¼ DŴ 0 þW 1ðzÞ total displacement in the me-

tallic bar (cm)
Ŵ 2ðzÞ ¼W 2ðzÞ total displacement in the embedding

material (cm)
Ŵ
0

1E total displacement at the outer edge of the
metallic bar (cm)

Ŵ
0

1I total displacement in the metallic bar at the
elastic–plastic interface of the bond springs
(cm)

z0y elastic bond length for P0y ¼ P ¼ P00y
z00y elastic bond length for P ¼ P00y
a kS(1+E1A1/E2A2)/E1A1 (cm

�2)
l E1A1/E2A2

s1y yielding stress of the metallic bar (daN/cm2)
S adherent perimeter of the metallic bar (cm)
t bond stress (daN/cm2)
tc ¼ P/SL mean uniform bond stress (daN/cm2)
ty yielding bond stress (daN/cm2)
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agreement with mesoscopic experimental results (model of
macroscopically uncracked concrete).

After these first applications, the differential equation of
bond has been of course extended and refined by the
introduction of various local non-linear bond–slip relations
and also by allowing in the attainment of the inelastic
range by the steel.

The integration has been conveniently performed each
time with numerical techniques in a number of different
approaches (see for example, Refs. [10–13]).
2. Research significance

The highly detailed and realistic amount of information
that modern discrete modelling techniques are able to
achieve in the local microscopic response of steel bars,
differently embedded in a massive medium, requires
normally a big amount of computational resources. Some-
times their implementation in large scale calculation
schemes of extended systems reveals to be too burdensome
if we consider that refined results frequently exceed the
needs of structural analysis at macroscopic levels.
On the contrary, current analysis of semi-rigid joints
requires simple calculation schemes where the splicing
components are modeled by assemblages of springs with
suitable force–displacement constitutive law [14]. Similarly,
r.c. bars in composite semi-rigid joints, may be effectively
modelled by equivalent springs with adequate non-linear
force–displacement laws that cumulatively include bond
effects.
Moreover, in spite of so many available refined

theoretical models, FIB Bulletin [6] still defines L as
anchorage length if it is sufficient to let the bar material

yields before the bond layer fails making no difference
weather the bond failure must be reached just locally, can
be extended over a finite portion of L or even all over L.
At the same time, also many authors very often consider

as bond ultimate state only that corresponding to the
complete plasticity of the bond layer (with a uniform
distribution of bond stresses) without taking into account
intermediate elastic–plastic stages and if the plasticity of
the anchor initiates just when the bond material starts
yielding or when it is already completely yielded.
The goal of getting a simple and handy analytical

description of these progressive failures has been pursued
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in the present paper. It is based on the well-known
Hermite–Bresson differential equation of bond in the
elastic range applied to the classic problem of a tensile
bar embedded on a finite length in a massive and rather
rigid support. The ideal hypotheses are that the connection
is developed through a elastic–plastic slip layer where all
the properties contributing to the bond action are lumped
together.

The simplicity of the model permits a clear and practical
parametric and geometric representation of the results and
also to evidence, as a secondary consequence, some
analytical properties of mechanical interest.
Fig. 2. Constitutive laws of the bar’s material and of the bond.
3. Bond modelling in the elastic domain: the

Hermite–Bresson equation

Let us consider the problem of coupling together two
straight coaxial bars: the first one is fixed at one extreme
and the second one is loaded at the edge E by a gradually
increasing force P (Fig. 1).

Along the splice length L the bar may be regarded as
composed by an inner prismatic core (bar 1) and a coaxial,
uniformly thick support of different material (bar 2). The
two component parts of the bar are uniformly connected to
each other by means of an extremely thin bond medium
schematized by a uniform distribution of longitudinal
tangential springs.

Let us suppose that the cross sections of the inner and of
the outer bar remain plain along L and that relative
longitudinal displacements between the two materials are
restrained all over the bond length by the springs which
react with bond shear stresses t uniformly distributed, at
each section, along the perimeter S of the interface.

Under these assumptions the resultants of the tension
stresses in both bars, as well as the resultant of the shear
forces per unit length: t ¼ St , are ideally applied to the
axis of the composite bar and the whole problem is
therefore reduced to just one dimension.

The two bars are assumed to be elastic-perfectly plastic
with different Young’s moduli and yielding points and also
Cross section

Longitudinal section

elastic-plastic bond material
bar material : E1, A1

support material : E2, A2

adherent perimeter Σ

z

P

E

L

O

Fig. 1. Scheme of the mechanical model.
the bond springs are supposed to have an elastic-perfectly
plastic constitutive law with ty ¼ Sty as yielding point
(Fig. 2).
Let us put the origin O of the z-axis at the point of bar 2

corresponding to the unloaded end of bar 1 (Fig. 1). If
DŴ 0 is the slip between the two bars at point O and W1(z),
W2(z) are, respectively, the axial elastic displacements of
the two bars at any point of the anchorage segment L, than
the total displacement Ŵ 1 of a generic point of bar 1 with
respect to point O is Ŵ 1ðzÞ ¼ DŴ 0+W1(z) while of course
Ŵ 2ðzÞ coincides with W2(z) (Fig. 3).
The unknown function of the problem is the difference

DŴ ðzÞ between the total longitudinal displacement Ŵ 1ðzÞ

of bar 1 and the total longitudinal displacement Ŵ 2ðzÞ of
bar 2, described by the already mentioned equation of
bond:

d2DŴ ðzÞ

dz2
�

kS
E1A1

1þ
E1A1

E2A2

� �
DŴ ðzÞ ¼ 0, (1)

where A1 and A2 are respectively the cross section areas of
bar 1 and 2; E1 and E2 are, respectively the Young’s
modulus of bar 1 and 2.
Put

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kS

E1A1
1þ

E1A1

E2A2

� �s
Fig. 3. Notation of the absolute and relative displacements.
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Fig. 5. Qualitative distribution of bond stresses at and after the plasticity

initiation of the springs.
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and once integrated Eq. (1), shear stresses along L directly
follow as

tðzÞ ¼ kD
_

W ðzÞ ¼
Pk
a

1

E1A1

cosh az

sinhaL

�

þ
1

E2A2

cosh a z� Lð Þ

sinhaL

�
ð2Þ

and are plotted in Fig. 4 for different values of the ratio
l ¼ E1A1/E2A2:

4. Elastic–plastic bar embedded in a very rigid support

4.1. Elastic phase

If bar 2 is much stiffer than bar 1, than we can put
E2A2ffiN into formula (2) and bar 2 can be from this point
assimilated to a rigid half space where bar 1 is embedded.

Factor a reduces than to

a ¼

ffiffiffiffiffiffiffiffiffiffiffi
kS

E1A1

r
¼

ffiffiffiffiffiffiffiffiffiffiffi
K

E1A1

r
(3)

and the equations of the total slip and of the bond stresses
assume the reduced forms

DŴ ðzÞ ¼W 1 zð Þ ¼
P

aE1A1

cosh az

sinhaL
,

tðzÞ ¼
Pk

aE1A1

cosh az

sinhaL
. ð4Þ

The absolute displacements of the unloaded and of the
loaded end are given, respectively, by

Ŵ 1ðz ¼ 0Þ ¼
P

aE1A1

1

sinhaL
,

Ŵ 1ðz ¼ LÞ ¼
P

aE1A1

1

tanh aL
¼ KeqP. ð5Þ
4.2. Phase of plasticity initiation in the bond material

Let us assume now that the bond material yields first,
followed by the bar. The yielding process of the bond
springs initiates at the loaded edge E of the bar where slip
and shear stresses are maximum and propagates towards
the other extremity O as qualitatively illustrated in Fig. 5.
The value P0y of the force P corresponding to the

plasticity initiation of the springs is deduced from the
condition that

tðz¼LÞ ¼ ty ¼
kP0y

aE1A1 tanh ðaLÞ
¼

kP0yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KE1A1

p
tanh ðaLÞ

,

) P
0

y ¼
ty

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KE1A1

p
tanh ðaLÞ ¼

ty

a
tanh ðaLÞ ð6Þ

and the related displacement Ŵ
0

1E is of course equal to
Ŵ
0

1E ¼ KeqP0y.
We want now to determine the relation P ¼ PðŴ

0

1EÞ

when P ¼ P0y.
The interface between still elastic and yielded springs is

situated in a point I at the distance z0y from the origin O

(Fig. 5).
To calculate z0y it is sufficient to impose from Eq. (6) that

P ¼ ty

tanh ðaz0yÞ

a
þ ðL� z0yÞ

� �
. (7)

For each P4P0y the precedent gives the corresponding
distance z0y of point I.
The displacement of point E is the sum of the elastic

elongation of the portion L� z0y of the bar with the
displacement of point I.
In I the tensile force in the bar is

NI ¼ P� ty L� z0y

� �
. (8)

Therefore the displacement Ŵ 1I is, according to the
second of Eq. (5)

Ŵ 1I ¼
P� tyðL� z0yÞ
h i

tanh ðaz0yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KE1A1

p ¼W y ¼
ty

K
¼

ty

k
. (9)
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On the other hand, the elongation of the portion ðL� z0yÞ

is given by

dŴ 1 ¼

Z ðL�z0yÞ

0

Nðz̄0Þ

E1A1
dz̄0 ¼

1

E1A1
PðL� z0yÞ �

ty

2
ðL� z0yÞ

2
h i

(10)

and hence

Ŵ 1E ¼ Ŵ 1I þ dŴ 1 ¼
P� tyðL� z0yÞ
h i

tanh ðaz0yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KE1A1

p

þ
1

E1A1
P�

ty

2
ðL� z0yÞ

h i
ðL� z0yÞ. ð11Þ

Correlated couples of values ðP4P0y;P
0
zÞ substituted into

the precedent Eq. (11), give the desired relation P ¼

PðŴ 1EÞ between the applied force P and the displacement
Ŵ 1E of the free edge E of the bar after the yielding of the
bond springs is occurred but the bar is still thoroughly
elastic.

Fig. 6 contains some force vs. free edge displacement
curves for different values of the parameter a, where
L ¼ const. ¼ 100 cm. Non-linear parts of the graphs
correspond to the progressive yielding of the springs.

5. Ultimate limit states

As previously said, FIB Bulletin 10 defines anchorage
length L that sufficient to let the bar material yields before

the bond layer fails.
With the help of the present schematization it can be

evidenced that two limit situations may be defined in
correspondence of the yielding initiation of the bar:
�

P
 (

d
aN

)

F

a limit state of incipient plasticity, when yielding
contemporary initiates in the bar and in the bond layer
at the outer edge E of the anchorage. Let us denote with
LIP the anchorage length that satisfies this condition,
0
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yielding initiation
of the bar

1

ig. 6. Force versus free edge displacement relationships at varying a.
�
 a limit state of complete plasticity, when the yielding of
the bar initiates just when the plasticity has spread in the
bond layer all over L. Let us denote with LCP the
anchorage length that satisfies this condition,

Intermediate states may also take place if the yielding of
the bar initiates when the plasticity of the bond layer is not
yet complete.
5.1. Limit state of incipient plasticity: LIP anchorage length

The anchored bar initiates to yield from the outer edge E

as soon as s1 ¼ s1y.
The corresponding applied force is therefore equal to

P00y ¼ s1yA1 and the distance z00y from O of the interface I

between elastic and plastic bond must satisfy Eq. (7) where
P must be put equal to P00y.
The associated displacement Ŵ 1E is finally obtained by

substituting the couple of values P00y ; z
00
y into Eq. (11).

From this point on, further displacements of the free
edge are assumed to occur at a constant applied force P00y
(see Fig. 6).
Let us state the condition that

P0y ¼ P00y (12)

or that the yielding of the bond material and of the
anchored bar initiate contemporary:

P0y ¼ P00y )
s1y

ty

� �
¼ F IP ¼

aE1

k
tanh ðaLÞ. (13)

Let us introduce the following quantities which have
both the dimension of a length:

E1

k
¼ c;

A1

S
¼ r, (14)

c represents a measure of the ratio between the stiffnesses
of the core material and of the bond layer while r gives an
idea of the extension of the adherent perimeter in
comparison with the area of the core cross section. Large
values of r correspond to little adherent perimeters and the
maximum for r is of course reached in circular smooth
bars.
Increasing c and decreasing r traduces into an ideal

improvement of the bond performances of the embedded
bar.
With these positions we have that

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kS

E1A1
¼

r
1ffiffiffiffiffiffiffiffiffiffi
c � r

p (15)

and the dimensional function representing the ratio
between yielding stresses in the core and in the bond
material assumes therefore the form

FIP c;rð Þ ¼
cffiffiffiffiffiffiffiffiffiffi
c � r

p tanh
Lffiffiffiffiffiffiffiffiffiffi
c � r

p
 !

(16)
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Fig. 7. Graph of the function FIP ¼ f(C, r).
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which is reproduced, for a hypothetic L ¼ 100 cm, in the
graph of Fig. 7.

Figs. 8 and 9 reproduce, respectively, the intersections of
the surface F(C, r) with planes r ¼ const., and C ¼ const.

From these figures it can be easily deduced how, for low
values of r (large adherent perimeters) and increasing
values of C (bar material relatively stiffer than the bond
material) s1y may be much higher than ty and still the
contemporary yielding of the two materials takes place.

It can be also seen that, with large values of r (reduced
adherent perimeters), the influence of the relative stiffness
of the two materials on the satisfaction of such condition
tends to vanish.

Under this limit state, anchorage length L can be
deduced from Eq. (16):

LIP ¼ arctan h
s1y

ty

� � ffiffiffiffi
r
c

r� � ffiffiffiffiffiffi
cr

p
. (17)

5.2. Limit state of complete plasticity: LCP anchorage length

When the outer edge E of the anchored bar initiates to
yield under the force P00y ¼ s1yA1 the bond material has just
completed its plasticity process.

Therefore the resultant of the shear stresses is
P000y ¼ LSty.

If we impose that

P00y ¼ P000y , (18)

it follows that

s1y

ty

� �
¼ F CP rð Þ ¼

LS
A1
¼

L

r
(19)

which, in the space (FCP, C, r), is the equation of an
hyperbolic cylinder parallel to the C axis.
The anchorage length is now of course independent from
C and linearly dependent from r and the ratio s1y/ty:

LCP ¼
s1y

ty

� �
r. (20)

5.3. Ratio D ¼ LIP/LCP

Let us now introduce the ratio D between the anchorage
lengths LIP and LCP corresponding respectively to the
yielding of the anchored bar when the bond material
initiates to plasticize or is completely plasticized:

D ¼
LIP

LCP

¼
arctan h s1y=ty

	 
 ffiffiffiffiffiffiffiffiffi
r=c

p� �
s1y=ty

	 
 ffiffiffiffiffiffiffiffiffi
r=c

p 41. (21)

Eq. (21) is defined, for positive values of r and C, only
over the sector

CXF2r (22)

and approaches, for any given r, the asymptotic value 1 if
C-N.
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In Fig. 10 is plotted, as example, the spatial distributions
of D ¼ f(C, r) for F ¼ 50.

Figs. 11–15 represent the distributions of the isovalues
curves of D ¼ f(C, r) for different, fixed values of F.

6. Conclusions

From the preceding graphs it can be deduced that:
(1)
 For increasing values of the ratio F ¼ s1y/ty between
the yielding stresses of the bar and of the bond
material, the definition domain of the ratio D ¼ LIP/
LCP between the anchorage lengths, respectively, at the
incipient and the complete plasticization of the bond
material quickly vanishes. It means that the condition
of contemporary, incipient plasticity of the bar and of
the bond layer can be reached only for a restricted
range of the mechanical properties of the two materials
(described by C) and of the splice geometry (described
by r) and also that this limit situation cannot exist if F

is sufficiently great.

(2)
 For a given F, the ratio D approaches its asymptotic

value 1 faster by increasing C under low, constant
values of r. That means that this ideal, unmatchable
condition is better approximated in bars of large
adherent perimeters.
(3)
 Straightforward estimation of the anchorage length LIP

corresponding to the simultaneously plasticity initia-
tion in the bar and in the bond material, can be
performed as shown in the following application.
7. Application

A smooth cylindrical bar of mild steel (f ¼ 2.0 cm,
E1 ¼ 21,00,000 daN/cm2, s1y ¼ 2500 daN/cm2) must be
glued in hole previously drilled in a massive, rather rigid
support.

Let us suppose that the bond material is characterized by
ty ¼ 50 daN/cm2 and k ¼ 1400 daN/cm3. We want to
determine the anchorage length LIP.

From F ¼ s1y/ty ¼ 50 it follows immediately that the
graph of Fig. 11 must be used.

Since A1 ¼ pf2/4 ¼ 3.14 cm2 and S ¼ pf, than r ¼ f/
4 ¼ 0.5 cm and C ¼ E1/k ¼ 1500 cm.

From Fig. 11, for r ¼ 0.5 cm and C ¼ 1500 cm, we get
D ¼ LIP/LCPffi1.7 and, since LCP ¼ Fr ¼ 25 cm, we finally
obtain LIP ¼ 42.5 cm.

Let us now suppose to use a bar of equivalent square
cross section (size l ¼ 1.773 cm).
F and C remain unchanged while r ¼ 0.44 cm because
the adherent perimeter is now nominally grown up to
S ¼ 4 l ¼ 7.09 cm.
From Fig. 11, for r ¼ 0.44 cm and C ¼ 1500 cm, we get

D ¼ LIP/LCPffi1.55 and, since LCP ¼ Fr ¼ 22 cm, we
obtain LIP ¼ 1.55� 22 ¼ 34.1 cm.
Therefore, with an increase of the adherent perimeter

of about 13% the anchorage length LIP decreases of
about 20%.
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