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Abstract

The time–space distribution of eigen-stresses and residual deformations of a plane plate which reaches its final solid state through a

given transition process of non-uniform cooling is described here by means of a simple visco-elastic rheological model.

The aging processes of the elastic and viscous properties are supposed to be temperature dependant in order to directly control the

influence of the thermal history on the final stress and deformation conditions of the solid.

The model is able to reproduce qualitatively well the development of eigen-stresses in the spatially symmetrical cooling processes of

tempering or toughening, as well as the formation of eigen-stresses and permanent bending in the spatially asymmetrical cooling

processes of heat curving.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

At early stages of the manufacturing process, a great
part of structural materials and components find them-
selves in a state of very high temperature and very low solid
consistence. Through the subsequent transient phase of
progressive cooling down, the material or the component
gradually achieves its final solid state as for example in steel
plates after the rolling treatment or in glass panes during
heat tempering. A similar process develops also in a young
concrete wall where the inner production of hydration heat
and the insulating action of the forms cause initially a quasi
uniform temperature distribution that turns to a transient
cooling process when the forms are removed and the lateral
surfaces directly interact with the cooler open air (see for
example Ref. [1]).

In all the cases, if the rate of heat exchange at the outer
surfaces is relatively high in comparison to the thermal
conductivity of the material—i.e. the Biot number is
large—a transient non-isothermal cooling down phase

takes place through the thickness of the plate and before
thermal equilibrium is finally reached, temperature changes
non-linearly with respect to time and space.
Coupled with the thermodynamical aspects of the

problem, mechanical effects take also place in form of
transient distributions of eigen-stresses and deformations.
It is well known that non-linear temperature distribu-

tions cause in a solid self-equilibrated thermal stresses
(primary eigen-stresses) whatever the mechanical proper-
ties of the material are and even if the body is completely
free from outer restrains, but if during the transient period
of cooling any part of the material has not yet crossed the
transformation temperature, corresponding to a significant
increase in Young’s modulus and viscosity, non-linear
thermal deformations are compensated by the flow of the
still soft material and eigen-stresses quickly vanish.
However, from the instant at which the temperature of

the outer surfaces has reached this transformation value,
the stiffening front propagates from the borders inwards.
At this time the inner warmer layers of the body continue
to contract following the cooling progression but this
contraction is restrained by the colder, already stiff
outer layers giving rise, when the stiffening process has
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completed, to a complex system of non-stationary eigen-
stresses—generally compressive at the surfaces and tensile
in the interior—which would remain permanently locked in
the material if relaxation phenomena would not take place.
Additionally, in a cooling process that progresses symme-
trically with respect to the mean plane of the plate, residual
deformations are at each time step also symmetrical;
consequently the plate remains at every instant plane and
at the end of the process a mean general contraction of its
initial dimensions is the only evident irreversible deforma-
tion. Such properties are at the basis of heat treatments like
toughening of steel plates and hardening or tempering of
float glass panes.

If the cooling process develops not symmetrically with
respect of the mean plane, the plate curves at any time
under the combined effect of thermal volume changes,
elastic and creep strains. Once again, due to the non-
uniform and not simultaneous stiffening process over the
thickness and even when the final stage of uniform
temperature is reached, a residual permanent curvature
takes place in addition to the general uniform contraction
and also, of course, to thermal eigen-stresses. This effect,
called heat curving, is widely used to fabricate structural
steel girders for curved bridges. Following this procedure,
steel beams are submitted to multiple heat/cool cycles, each
of them resulting in a cumulative permanent deformation
[2] that partially vanishes with time under the effects of
relaxation.

Due to the increasing demand coming from many
different industrial fields for a sound theory able to model
temperature dependent stiffening processes of structural
components and to predict their final stress and deforma-
tion state, generations of mechanicians have worked at the
development of a general non-linear theory of thermo-
visco-elasticity which could give solutions to all this class of
problems.

Numberless books and contributions have been devoted
to such a complex theme where mechanical effects are
strongly coupled with thermodynamics (see for example,
Refs. [3,4]). Very frequently entire special research currents
and ramifications have formed within this field, each one
devoted to a particular material (see for example the
contributions gathered in Ref. [5]). In the impossibility to
cite all the relevant contributions, we have chosen to recall
here two works of Müller [6,7] for what metals are
concerned, and two of Bažant for what concrete is
concerned [8,9].

In most cases, however, following a purely phenomen-
ological approach, uncoupled linear viscoelasticity has
been used to predict eigen-stresses in solidification pro-
cesses produced by heat loss.

Therefore, thermal stresses in concrete at early ages have
been calculated in a simplified way by Nagy [10] while
concrete aging has been described in integral form by Carol
and Bažant [9] which have schematized a elementary
portion of the material by means of Maxwell and Kelvin
chains whose components progressively solidify. All the

moduli are assumed to vary proportionally to a single time
dependant aging function taken as the ratio between the
solidified volume at a generic instant and the final volume
of the body. The authors assumed also that the new layers
of material being solidified join the constituent ones in a
parallel coupling.
Studying glass solidification, Lee et al. [11], for example,

tried to describe mathematically stress and structural
relaxation in the field of thermal annealing or tempering
of this material by means of a visco-elastic model, extended
later by Gardon and Narayanaswamy [12–15], based on
the experimental observations of Kurkijan that glass
behaves as a thermodynamically simple visco-elastic
material [16]. Soules et al. [17] and more recently Laufs
[18], have implemented the Narayanaswamy visco-elastic
model in FEM library programs in order to accurately
predict the development of tempering stresses from the
knowledge of the thermal history of the glass plate and the
temperature dependence of its visco-elastic properties.
In this study we have also adopted a phenomenological

approach schematizing a plane plate by means of a very
simple discrete rheological model composed by a parallel
assemblage of Maxwell chains submitted to prescribed
thermal histories and whose visco-elastic properties are
given as regular functions of temperature.
Aim of the paper is just to indicate an engineering-like,

practical procedure for analytically predicting time and
space distributions of eigen-stresses and permanent defor-
mations in plane plates during temperature dependent
stiffening processes.

2. Basic assumptions

Let us consider the simple case of a large rectangular
plate which is initially at a uniform, relatively high
temperature. The plate is at the beginning of a stiffening
process which progresses, within a certain transition
period, from the outer to the inner surfaces as a
consequence of its cooling down to a final lower, uniformly
distributed thermal field next to the room temperature.
During the transient period the heat losses are supposed

to be uniformly distributed at each instant all over the two
external surfaces. At sufficient distance from the edges the
instantaneous temperature distribution varies just over the
plate thickness; the whole problem has therefore a
cylindrical symmetry with respect of any y-axis normal to
the plate (Fig. 1).
We suppose moreover that the time–space distributions

of the thermal fields are completely known during the
transient period.
The solidification process is here simulated by attributing

to the material known, visco-elastic temperature dependant
properties, based on experimental data, such that elasticity
approaches asymptotically its final value within the
transition period while viscosity tends, in the same interval,
to disappear.
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The aim is to predict the time progression of the
distributions of residual stresses through the thickness
during the transient phase of solidification.

3. Statement of the problem

Let us subdivide the plate into a finite number of thin
sheets parallel to the mean plane. Due to the polar
symmetry of the problem, at a sufficient distance from
the borders the deformation state at any point O of each
sheet is completely described by the radial strain along a
generic direction r from O parallel to the sheet. The
mechanical behaviour of a single strip may therefore be
schematized by a Maxwell chain succession of three units:
an elastic spring, a viscous dashpot, a thermal unit,

provided that yi indicates the distance of the ith sheet
from the mean plane (Fig. 2).
The thermal element is submitted to the prescribed

thermal history of the related strip, while the mechanical
properties of the elastic and the viscous unit follow a given
temperature dependance.
We assume also that the classic Kirchhoff hypothesis

applies, i.e. the strain distribution along the plate thickness
is linear at sufficient distance from the edges.
The complete calculation scheme thus consists in a

Kelvin chain arrangement of such strip-elements, as shown
schematically in Fig. 3.
Let the number of elements into which the plate is

subdivided be 2n, each element being identified by its index
i ði ¼ 1; 2; . . . ; 2nÞ.
Let us denote with �e

i , �
v
i and �

T
i , respectively, the strain in

the elastic spring, in the dashpot and in the thermal unit. If
se

i is the stress and Ei the elastic modulus of the spring, sv
i is

the stress, li the viscous coefficient of the dashpot and ai is
the coefficient of thermal expansion, then we can write

�ei ¼
se

i

Ei

, (3.1a)

�
�v

i ¼
sv

i

li

, (3.1b)

�Ti ¼ aiDTi, (3.1c)

where the dot indicates the time derivation and DTi is the
variation of temperature in the ith element.
Expressions (3.1), may be used with sufficient accuracy

also in the case when the material is submitted to a large
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Fig. 1. Cylindrical symmetry of the problem.
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variation of temperature; in this case it is sufficient to
consider E, l and a appropriate and known functions of
T : EðTÞ; lðTÞ; aðTÞ.

Since the three elements—spring, dashpot and thermal

cell—are connected in series, the total strain of each strip
can be written as

�i ¼ �
e
i þ �

v
i þ �

T
i , (3.2)

while the stress acting on the chain of three elements must
be the same

se
i ¼ sv

i ¼ sT
i ¼ si. (3.3)

If the body undergoes non-uniform change of temperature,
the strains due to the thermal expansion or contraction will
be consequently non-uniform. Since each strip is not free to
expand longitudinally, being bounded to neighbouring
strips by the hypothesis of strain linearity over the
thickness, the application of these strains will give rise to
stresses in the longitudinal direction and, in turn, to viscous
deformations.

Let us consider the system shown in Fig. 2. The body is
supposed to have initially a uniform temperature T0. Later,
during the cooling process, the temperature profile is no
more uniform within the thickness and changes with time.

The distribution of eigen-stresses evolves as well but,
since it starts from a self-equilibrated state, it must
maintain self-equilibrium at every instant.

In order to evaluate the stress distribution through the
thickness of the plate, we assume that the elastic, viscous
and thermal components of the strain are regular functions
of time and differentiate with respect to time the
compatibility equations (3.2).

Taking into account Eqs. (3.1a) and (3.3) we get

d�i

dt
¼

d

dt

si

Ei

þ
si

li

þ
d

dt
ðaDTÞi. (3.4)

Assuming

sið0Þ ¼ s̄i ¼ 0, (3.5)

the problem is to find a set of 2n functions siðtÞ and 2n

functions �iðtÞ that satisfy Eq. (3.4) and the conditions that
the body is stress-free in the initial state. In order to reduce
(3.4) to a more convenient form, let us consider the
instantaneous equilibrium equations

X2n

i¼1

si ¼ 0 (3.6a)

and

X2n

i¼1

siyi ¼ 0. (3.6b)

Their derivatives with respect to time yield the following:

d

dt

X2n

i¼1

si ¼ 0 (3.7a)

and

d

dt

X2n

i¼1

siyi ¼ 0, (3.7b)

that can be rewritten as

X2n

i¼1

dsi

dt
¼ 0 (3.8a)

and

X2n

i¼1

dsi

dt
yi ¼ 0, (3.8b)

considering also si regular functions of time and hypothe-
sizing yi not time depending.
Since

si ¼ se
i ¼ E�e

i , (3.9)

(3.8a) and (3.8b) can be thus expressed as functions of the
elastic strain:

X2n

i¼1

d

dt
ðEi�

e
i Þ ¼

X2n

i¼1

Ei
d�e

i

dt
þ
X2n

i¼1

dEi

dt
�e

i ¼ 0, (3.10a)

X2n

i¼1

d

dt
ðEi�

e
i Þyi ¼

X2n

i¼1

Ei

d�e
i

dt
yi þ

X2n

i¼1

dEi

dt
�e

i yi ¼ 0. (3.10b)

But we know, from (3.2), that �e
i ¼ �i � �v

i � �
T
i , then we

obtain

X2n

i¼1

Ei

dð�i � �v
i � �

T
i Þ

dt
þ
X2n

i¼1

dEi

dt
�e

i ¼ 0 (3.11a)

and

X2n

i¼1

Ei

dð�i � �v
i � �

T
i Þ

dt
yi þ

X2n

i¼1

dEi

dt
�e

i yi ¼ 0. (3.11b)

Now we observe that, according to Kirchhoff ’s hypothesis,
the total strain of each strip can be expressed by the
following linear relation:

�i ¼ �ðtÞ � jðtÞyi ði ¼ 1; . . . ; 2nÞ, (3.12)

where �ðtÞ and jðtÞ are, respectively, the average strain and
the relative rotation between the ends of the mechanical
model (see Fig. 2). Thus, the 2n unknown functions �iðtÞ
can be replaced by the only two �ðtÞ and jðtÞ. Eqs. (3.11a)
and (3.11b) become thus, respectively,

X2n

i¼1

Ei

d ð�� jyiÞ � �
v
i � �

T
i

� �
dt

þ
X2n

i¼1

si

Ei

dEi

dt
¼ 0 (3.13a)

and

X2n

i¼1

Ei

d ð�� jyiÞ � �
v
i � �

T
i

� �
dt

yi þ
X2n

i¼1

si

Ei

dEi

dt
yi ¼ 0.

(3.13b)
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Since � and j are not involved in the sum, we can write

d�

dt

X2n

i¼1

Ei �
dj
dt

X2n

i¼1

Eiyi �
X2n

i¼1

Ei

d�v
i

dt

�
X2n

i¼1

Ei

d�Ti
dt
þ
X2n

i¼1

dEi

dt
�ei ¼ 0 ð3:14aÞ

and

d�

dt

X2n

i¼1

Eiyi �
dj
dt

X2n

i¼1

Eiy
2
i �

X2n

i¼1

Ei

d�vi
dt

yi

�
X2n

i¼1

Ei
d�Ti
dt

yi þ
X2n

i¼1

dEi

dt
�ei yi ¼ 0. ð3:14bÞ

The two previous equations form a linear algebraic system
from which the unknown time derivatives of � and j can
then be readily obtained. The result is

where the summatory extremes are understood being
extended from i ¼ 1 to 2n.

Now, let us consider the terms included into brackets. By
adopting the expressions for the strains given by (3.1b) and
(3.1c), we get after some calculations

Ei_�
v
i þ Ei_�

T
i �

si

Ei

_Ei ¼ Eisi

1

li

þ
d

dt

1

Ei

� �
þ Ei

dðaDTÞi
dt

(3.17)

and

Ei_�
v
i yi þ Ei_�

T
i yi �

si

Ei

_Eiyi

¼ Eisi

1

li

þ
d

dt

1

Ei

� �
yi þ Ei

dðaDTÞi
dt

yi, ð3:18Þ

so that, with the position

1

Fi

¼
1

li

þ
d

dt

1

Ei

, (3.19)

expressions (3.15) and (3.16) assume, respectively, the form

We see that the time derivatives of � and of j can be
calculated provided we know the evolution of the stress
functions si, of Ei, li and of ðaiDTiÞ during time.
Consequently, the derivative of the strain in each strip,
unknown in (3.4), can be expressed in terms of the same
variables since, from (3.12),

d�i

dt
¼

d�ðtÞ

dt
�

djðtÞ
dt

yi ði ¼ 1; . . . ; 2nÞ. (3.22)

Thus, with the help of Eqs. (3.20) and (3.21), that express
the instantaneous equilibrium of the body, we can finally
rewrite the set of ordinary differential equations (3.4)
whose solution gives, together with the initial conditions
(3.5), the researched 2n functions siðtÞ. The set assumes the
following form:

dsi

dt
þ

Ei

Fi

si þ Ei

dðaDTÞi
dt

þ Ki yi

X
Ejyj �

X
Ejy

2
j

� ��

�
X Ej

Fj

sj þ Ej

dðaDTÞj

dt

� �
� yi

X
Ej �

X
Ejyj

	 


�
X Ej

Fj

sjyj þ Ej

dðaDTÞj

dt
yj

� ��
¼ 0, ð3:23Þ

where we introduced the further notation

Ki ¼
EiP

Ej

P
Ejy

2
j � ð

P
EjyjÞ

2
. (3.24)

Once obtained the stress functions siðtÞ, the components of
strain due to elastic and viscous effects are, respectively,
given by (3.1a) and (3.1b).

4. Applications

In order to demonstrate the capability of the model to
qualitatively well reproduce time and space distributions of

ARTICLE IN PRESS

_� ¼

P
Eiy

2
i

P
½Ei_�

v
i þ Ei_�

T
i � ðsi=EiÞ _Ei� �

P
Eiyi

P
½Ei_�

v
i yi þ Ei_�

T
i yi � ðsi=EiÞ _Eiyi�P

Ei

P
Eiy

2
i �

P
Eiyi

� 2 , (3.15)

and

_j ¼
P

Eiyi

P
½Ei_�

v
i þ Ei_�

T
i � ðsi=EiÞ _Ei� �

P
Ei

P
½Ei_�

v
i yi þ Ei_�

T
i yi � ðsi=EiÞ _Eiyi�P

Ei

P
Eiy

2
i �

P
Eiyi

� 2 , (3.16)

_� ¼

P
Eiy

2
i

P
½ðEi=FiÞsi þ EidðaDTÞi=dt� �

P
Eiyi

P
½ðEi=FiÞsiyi þ EiðdðaDTÞi=dtÞyi�P

Ei

P
Eiy

2
i �

P
Eiyi

� 2 (3.20)

and

_j ¼

P
Eiyi

P
ðEi=FiÞsi þ EidðaDTÞi=dt
� �

�
P

Ei

P
ðEi=FiÞsiyi þ EiðdðaDTÞi=dtÞyi�P

Ei

P
Eiy

2
i �

P
Eiyi

� 2 (3.21)
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eigen-stresses for different prescribed cooling histories, the
following numerical examples are given. In all the
applications the plate, of thickness 2d, has been subdivided
with a set of 20 units.

4.1. Symmetrical cooling

Due to the symmetry of the problem the plate remains
plane, thus

j ¼ 0, (4.1a)

_j ¼ 0 (4.1b)

and

_� ¼

P
Eiy

2
i

P
ðEi=FiÞsi þ EidðaDTÞ=dt
� �
P

Ei

P
Eiy

2
i

. (4.2)
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The set of differential equations reduces of course into

dsi

dt
þ

Ei

Fi

si þ Ei

dðaDTÞi
dt

þ Ki �
X

Ejy
2
j

X Ej

Fj

sj

��

þ Ej

dðaDTÞj

dt

��
¼ 0. ð4:3Þ

In the following, three examples are presented to illustrate
the time evolution of eigen-stresses in a plate as conse-
quence of symmetrical cooling.

4.1.1. Heat tempering: first case

A very large glass pane, initially at the uniform
temperature of T0 ¼ 600 �C, undergoes a given, arbitrary
cooling process described by

Tðy; tÞ ¼ Tf þ ðT0 � Tf Þe
�kt 1�

y

b1
ð1� e�btÞ

� �2( )
,

(4.4)

and illustrated in Fig. 4, whose shape well approximate
temperature fields during tempering treatments [19]. Fig. 4
collects also the set of thermal parameters assumed in the
present example.

It can be seen that in the first 4 s the temperature of the
outer surfaces diminishes of about 130 1C but from that

instant on the cooling proceeds rather slowly with reduced
thermal gradients within the thickness 2d and is completed
after circa 2000 s.
We assume moreover that the elastic modulus of the

material and the viscosity coefficient depend on tempera-
ture, respectively, following Eqs. (4.5a) and (4.5b) so that,
at a room temperature of Tf ¼ 20 �C, elasticity has reached
its final value and practically there is not any further
viscous deformation (see Figs. 5a and b):

EðTÞ ¼ Ef

1� egðT0�TÞ=ðT0�Tf Þ

1� eg
, (4.5a)

lðTÞ ¼ �l0 þ
W

ðT � Tf Þ
2
. (4.5b)

The solution of the set of differential equations (3.23),
numerically performed with the help of programme MATH-
EMATICA [20], allows to calculate the generation of the
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Fig. 7. Tempering thermal history (2nd case).
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tempering eigen-stresses through the thickness of the plate at
the different instants of the transition phase (see Fig. 6).

The form of the instantaneous distributions well resem-
bles available experimental data (see for example, Ref. [6])
and it can be noticed that surface eigen-stresses, which
are tensile before t ¼ 1024 s, turn after that instant to
compression and begin to grow up to the final level of about
27MPa while tensile eigen-stresses migrate towards the
middle part of the plate and reach a final intensity of
15MPa.

4.1.2. Heat tempering: second case

Let us consider again the same hypothetical thermal
history, described by Eq. (4.4) with a different set of
parameters, as indicated in Fig. 7 which collects also some
isothermal curves of this cooling down process.
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In this case the temperature of the outer surfaces
diminishes in the first 4 s of about 500 1C. Conspicuous
gradients are thus suddenly formed and persist practically

unchanged for almost 250 s. The process completely ends
after circa 4000 s.
The temperature dependence of the elastic modulus and

of the viscosity coefficient is assumed to be here the same of
the preceding example (see Figs. 5a and b).
Fig. 8 shows some isochronous curves of the tempering

eigen-stresses.
The sign inversion occurs in this case later compared

with the previous example ðt ¼ 2048 sÞ but thanks to the
increased value of the thermal gradients, surface compres-
sions reach now the intensity of about 86MPa and middle
tensions reach 51MPa.

4.2. Asymmetrical cooling

4.2.1. Heat curving: first case

Let us suppose that a 2d thick steel sheet undergoes the
following thermal history (see Fig. 9)

Tðy; tÞ ¼
TAðtÞ � TBðtÞ

2
�2

y

2d

	 
2
� 2

y

2d

	 

þ

1

2

� �

þ
TAðtÞ þ TBðtÞ

2
, ð4:6Þ

where

TAðtÞ ¼ Tf þ ðT0 � Tf Þ e
�at2 (4.7a)

and

TBðtÞ ¼ Tf þ ðT0 � Tf Þ e
�bt, (4.7b)

with a ¼ 10�7
�
C�2, b ¼ 10�2 �C�1 and the initial and final

temperature are, respectively, equal to T0 ¼ 600 �C and
Tf ¼ 20 �C.
The temperature dependance of the elastic modulus and

the viscosity coefficient is given, following Sen et al. [2], by
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(4.5a) and (4.5b), where we posed E0 ¼ 0MPa and Ef ¼

210 000MPa (see Figs. 10a and b).
Figs. 11 and 12, respectively, illustrate the time generation

of eigen-stresses and of the curvature, normalized in 2d.
It can be observed that, due to the asymmetry of the

process, final eigen-stresses are also asymmetric and
compression stresses are more intense at the face which
was first submitted to a rapid cooling.

The time progression of the normalized curvature can be
divided into two periods: during the first part it increases
very steeply with a maximum at circa 525 s. In the second
period the curvature j diminishes but approaches asymp-
totically the final permanent value of about 8:9� 10�5.

4.2.2. Heat curving: second case

We suppose now to submit the same steel sheet to a
different shaped thermal history, described by Eq. (4.8) and

illustrated in Fig. 13.

Tðy; tÞ ¼
TAðtÞ � TBðtÞ

2
cos p

yþ d
2d

� �
þ

TAðtÞ þ TBðtÞ

2
,

(4.8)

where TAðtÞ, TBðtÞ, EðTÞ, lðTÞ are the same of the
preceding example. Figs. 14 and 15, illustrate, respectively,
the time generation of eigen-stresses and of the curvature,
normalized in 2d.
It can be noticed that eigen-stresses do not assume in this

case the typical form of an inverted U but rather that of a
sort of sinusoidal curve.
The overall time progression of the normalized curvature

well resemble that of the preceding example with the
only difference that now, during the second period,
the diminishing branch overcomes zero, that is, the
curvature j surprisingly changes sign and the residual
final value asymptotically approaches a negative value
ð�4:3� 10�5Þ.
In other words, the final bending effect strongly depends

on the type of thermal history and it can even develop in
the opposite way to the desired one since, as in the present
case, the plate can even protrude, at the end, towards the
face that was cooled first.

5. Conclusions

During thermal treatments like glass tempering, steel
toughening or heat curving, plane plates achieve their final
state of solid consistence through different cooling
processes, instantly non-uniform over the thickness being
submitted at the same time to complex, transient and
heterogeneous evolutions of their visco-elastic properties.
Consequently, eigen-stresses and deformations continu-

ously change with time during this transition phase and
tend to final values whose knowledge is of great practical
importance but rather difficult to be foreseen.
In this paper this prediction is analytically pursued by

means of a very simple discrete rheological model
composed by a parallel assemblage of Maxwell chains
made of elements whose mechanical properties are
temperature dependant.
The stiffening process is simulated by attributing to each

element known temperature-dependant visco-elastic prop-
erties, which tend to the final values of the solid phase
within the transition interval, and by assuming known
temperature histories of regular although whatever form.
The model demonstrates ability to qualitatively well

reproduce, in a very straightforward and explicit way, the
time development of eigen-stresses and residual deforma-
tions all along thermal treatments of whatever kind and
appears therefore well suited, after the necessary calibra-
tions, for theoretical predictions about thermo-mechanical
effects following treatments like tempering in glass plates
and heat curving in steel beams.
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[9] Carol I, Bažant ZP. Viscoelasticity with aging caused by solidification

of nonaging constituents. Journal of Engineering Mechanics, ASCE

1993;119:2252–68.

[10] Nagy A. Simulation of thermal stress in reinforced concrete at early

ages with a simplified model. Matériaux et Constructions

1997;30:167–73.

[11] Lee EH, Rogers TG, Woo TC. Residual stresses in a glass plate

cooled symmetrically from both surfaces. Journal of the American

Ceramic Society 1963;48:36–128.

[12] Narayanaswamy OS, Gardon R. Calculation of residual stresses in

glass. Journal of the American Ceramic Society 1969;52:554–8.

[13] Gardon R, Narayanaswamy OS. Stress and volume relaxation in

annealing flat glass. Journal of the American Ceramic Society

1970;53:380–5.

[14] Narayanaswamy OS. A model of structural relaxation in glass.

Journal of the American Ceramic Society 1971;54:491–8.

[15] Narayanaswamy OS. Stress and structural relaxation in tempering

glass. Journal of the American Ceramic Society 1978;61:146–52.

[16] Kurkjian CR. Relaxation of torsional stress in the transformation

range of a soda-lime-silica glass. Physics and Chemistry of Glasses

1963;4:36–128.

[17] Soules TH, Rekhson SM, Markovsky A. Finite element calculation

of stresses in glass parts undergoing viscous relaxation. Journal of the

American Ceramic Society 1987;70:90–5.

[18] Laufs W. Ein Bemessungskoncept zur Festigkeit thermisch vorge-
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