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A CONTRIBUTION TO THE THEORETICAL PREDICTION OF LIFE-
TIME IN GLASS STRUCTURES 

Manuel Santarsiero, Maurizio Froli 

Structural Engineer, University of Pisa, manuel.santarsiero@gmail.com 
Professor, University of Pisa, m.froli@ing.unipi.it 

 
Editor’s Note:  The first author of this paper is one of the four winners of the 2011 Hangai Prize, awarded for 
outstanding papers that are submitted for presentation and publication at the annual IASS Symposium by younger 
members of the Association (under 30 years old). It is re-published here with permission of the editors of the 
proceedings of the IABSE-IASS 2011 Symposium: “Taller, Longer, Lighter” held in September 2011 in London, UK. 
 
ABSTRACT 

In order to assess safety levels in glass structures a scattered and inhomogeneous variety of mostly complicated 
resistance criteria is presently available, very often requiring specially developed softwares. For this reason 
engineers who wants to assess with reliability the actual safety level of glass structures of relevant economical 
importance are still obliged to undertake expensive experimental tests. 
In the attempt to overcome this problem, it was formulated a new semi-probabilistic failure prediction method 
called "Design Crack Method” (DCM), which is a compromise between the necessity to accurately model the 
complex mechanical behaviour of glass at breakage and the need to reduce the analytic complexity of the 
calculations. On the basis of Linear Elastic Fracture Mechanics, such aim has been analitically reached in the 
present work by defining a new quantity called Design Crack, characterized by a mathematical expression that 
depends on the probability of failure and on the surface damaging level. 

The proposed method, which is in accordance with the basic principles of the Structural Eurocodes, allows to 
predict glass lifetime taking into due account the influence of parameters like the surface extension and the 
loading time-history of the structural element. The results obtained by some applications on the D.C.M. have 
been numerically compared in this paper with those of the existing most frequently used theoretical methods. 
 
Keywords:  structural glass, glass strength, fracture mechanics, static fatigue, surface flaws, life time, 
probabilistic model, analytical method 
 
 
1. BASIC CONCEPTS ABOUT THE 
MECHANICAL BEHAVIOUR OF GLASS  

Every glass surface, although apparently intact, is 
unavoidably affected by microscopic randomly 
distributed cracks. When the glass element is 
subjected to mechanical stresses, high stress 
concentrations occur at the tip of the micro cracks 
which can not be plastically redistributed because 
of the amorphous crystalline structure of the 
material, lacking in preferential plastic-flow plans. 
This peculiar feature causes the typical brittle 
fractures that characterize this material. The 
fracture resistance of damaged elements can be 
analytically described by the principles of Linear 
Elastic Fracture Mechanics. For this reason Irwin 
[1] introduced the Stress Intensity Factor (K), in 
order to  describe the  behaviour of brittle  materials 

 

Fig. 1:    versus KI  
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damaged by a single flaw placed perpendicularly to 
the stress direction (opening mode I): 

K(t) (t)Y  a(t)   (1) 

Failure occurs when the propagation of the crack 
becomes unstable, that happens when: 

K(t) KIC   (2) 

KIC represents the Critical Stress Intensity Factor 
which depends only on the kind of material and can 
be usually considered technically constant because 
of its low statistical spread. Substituting (2) in (1) 
easily allows to obtain the acr e cr analytic 
expressions, respectively representing the crack 
depth and the stress intensity able to induce 
unstable crack propagation. This pair of values 
identifies the so-called “inert strength”. The graph 
of Fig.1 shows, according to the K-factor, the flaw 
propagation velocity of a glass element subjected to 
constant stress during time and immersed in a 
humid environment. Although in section I the K 
value is much lower than KIC, a slow sub-critical 
growth of flaws depth occurs on the glass surface 
which gradually reduces the inert tensile glass 
strength over time. This phenomenon is known as 
static fatigue and plays one of the main roles in 
theoretically determining the ultimate strength of 
glass structures. As shown in Fig.1-1, the v-K 
relation is represented by a constant slope curve on 
a bi-logarithmic plot and it can be analytically 
described by the following differential equation: 

a t  v0 K(t) KIC n     (3) 

with n being the curve’s slope in section I and v0 the 
propagation velocity when K = KIC.  

2. HALDIMANN’S PROBABILISTIC 
METHOD: THE LIFETIME PREDICTION 
MODEL 

At present, the most advanced prediction model of 
strength in glass element seems to be the Lifetime 
Prediction Model formulated by M.Haldimann in 
[2]. He demonstrates that the crack opening mode I 
mainly affects failure probability (Pf) finally finding 
the following general expression of Pf that describes 
the life-time of a glass element of whatever shape, 

submitted to sub-critical cracks’ growth and to a 
generic time and space variable stress-history  



Pf (t) 1 exp 
2

A0
max
[0,t ]

 (,
r 
r ,)

0
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





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n2


1

U0
n2  n ( ˜ , r r ,)d ˜ 
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










m0

0

 / 2

 dAd
A


















 

(4) 

Where: 

 0 and m0 are statistical parameters, related to 
the Weibull distribution, that describe the 
damage rate of the surface. They can be 
determined by experiments and are material 
intrinsic properties, not dependant on the type 
of laboratory tests. 

 U 
2KIC

2

(n  2)v0Y
2   is an expression related to 

specific parameters of the material, usually 
characterized by constant values, defined by 
Linear Elastic Fracture Mechanics and by the 
Static Fatigue differential equation.   

The (4) is therefore related, by means of a 
probabilistic approach, to the parameters 0 and m0 
which are characterized by a clear physical meaning 
[2-3]. Restrictive assumptions are not stated about 
element shape, load or stress time-history and space 
variability, constraints and damaging surface 
condition. The only conceptual limitation of the 
Lifetime Prediction Model is that loads are assumed 
to be deterministic variables. The analytical 
complexity of the expression (4) make it not suited 
for current engineering oriented design activities. 
For this reason, Haldimann himself suggested a 
simplified version of it by introducing some 
conservative assumptions [2]. After some 
manipulation, expression (4) finally reduced to the 
following simplified expression of the failure 
probability (the meaning of  is described in 
paragraph 4 by expressions (13) and (14): 

Pf 1exp(k m' )  (5) 

Where k  t0 U 0
n2

 
and m' n m0 n  2 . 

Then, once selected a given Pf for the glass tensile 
strength, a failure criterion can be written in the 
following form:  
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Stress     = 

 ln(1Pf ) 
1

m' 
t0

U 0
n2











1

n

 
(6)

 

=     Strength probabilistic 

3. DETERMINISTIC MODEL: SINGLE 
CRACK LIFE TIME  

The (1) and (3) describe glass mechanical 
behaviour during time of an ideal perfect element 
only damaged with a single flaw, referring 
respectively to the Linear Elastic Fracture 
Mechanics and to the static fatigue phenomenon. 
Let us suppose that the general surface stress time-
history is uniform over the surface and acting for T-
seconds. If the initial crack size is also known, 
substituting (1) in (3) leads to the following 
integral-differential equation with separable 
variable: 

 n ( ) v0

Y 
KIC








n










d

0

t

  a


n

2 da
ai

a f

  (7) 

Taking into account (2), formula (7) can be 
rearranged into (8) which states that a brittle 
unstable crack propagation does not occur if the 
following condition is satisfied: 

n (t)dt 
2 KIC

n

(n  2)v0(Y  )n ai

n2

20

T

 1 ai

KIC

(t)Y 
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2
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
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









 

(8) 

Finally, assuming the conservatory hypothesis that 
ai <<< acr (as demonstrated by Haldimann [2] for 
common load application durations), the quantity in 
square brackets approaches 1 and therefore it is 
possible to separate the variables obtaining the 
following inequality where the damage caused by 
external loading is compared with the maximum 
damage that glass can withstand: 

Damage Soll .
(, t)  Damage Max .Tolerable

(KIC ,n,v0,Y ,ai)   (9) 

 If we rewrite (9) in an explicit way we obtain: 

 n (t)dt 
2KIC

n

(n  2)v0 (Y  )n
ai

2n

2

0

T

  (10) 

where the first part of (10) is the well known 
Brown’s Integral. Therefore, if we know a generic 
stress time-history lasting T-seconds, by arbitrarily 
choosing the value of t0 reference time, it is possible 
to calculate by Brown’s Integral the equivalent 
constant tensile stress (see section 4 and 5) that 
induces onto the glass surface, during t0, the same 
damage as the real stress history variable over the 
time T: 

 t0


1

t0

 n (t)dt
0

T












1

n

  (11) 

With position (11) the failure criterion (10) can be 
written in the following form, where the 
deterministic strenght is a function only of the 
initial crack ai (because the other parameters are 
characterized by low statistical spread [4]): 

Stress  = 

t0


1
t0

2KIC
n

(n  2) v0  (Y  )n
ai

2n

2










1

n

 (12) 

=   Strength deterministic 

4. THE DESIGN CRACK METHOD ( DCM ) 

4.1 Basic idea  

In paragraph 3 we have briefly recalled the 
deterministic model of the mechanical behaviour of 
an ideal perfect glass plate, only containing a single 
flaw with a known initial depth ai, submitted to a 
uniform tensile stress (t) generically variable 
during a time T. 

The two main advantages of this model consist in 
its analytical simplicity and in the reliability of the 
solution, but on the other hand it does not take into 
account the randomness of the main parameters 
affecting the problem of glass tensile strength 
during time. 
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Fig. 2: Basic Idea 

In order to overcome this problem, it was thought to 
search the analytical expression of a single “Design 
Crack” having such a depth ai,d  able to induce the 
same damaging rate of the real glass element 
subject to a random distribution of cracks over its 
surface. It was also decided to pursue this goal 
analytically, without using any empirical coefficient 
or assumption.  

In the following expression, t0(x,y) represents the 
constant tensile stress of duration t0 equivalent to 
the real stress history (t,x,y) generally variable 
during time T, while  represents the uniformly 
distributed and constant over time t0 tensile stress 
acting across the element of area A, equivalent to 
(in terms of damage) any generic (t,x,y) (see also 
[3]). Analytically : 

 t0
(x, y) 

1

t0

 n (t, x, y)dt
0

T





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(13) 

 
1
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 t0

m ' (x, y)dA
A












1

m '


1

A0

 t0 , j
m '

j1

q
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(14) 

Obviously the integrals are extended only to 
decompressed areas, referring to surface stress field 
net of compression residual stresses induced by 
tempering processes and external pre-stressing. 

4.2 Analytical Formulation of the Design Crack 
Method 

The problem is analytically stated by equating the 
material strength expressed in a deterministic way 
by the second term of equation (12) to the 
probabilistic strength expressed by equation (6): 

 Rdet (v0,n,Y,KIC ,t0,ai,d )= Rprobabilistic(Pf ,0 ,m0 ,n,v0 ,Y ,KIC )  

                          (15) 

It can be seen that the time-term t0 can be 
eliminated and therefore, after some re-arranging, 
we achieve the final time-independent expression of 
the Design Crack ai,d ,  

ai,d 
KIC

Y0







2
( ln(1 Pf ))2 /m0















= ai,d (Pf , 0 , m0) 

                                (16) 

Combining (16) with (9), we define at first the 
failure criterion in terms of damage: 

DamageSoll .
(, t)  ≤  Damage Max .Tolerable

(ai)  (17) 

After some re-arrangement, the preceding failure 
criterion related to a glass element submitted to any 
stress time-history over a time interval can be 
written in more common terms of tensile stresses: 

Stress = 

 
1

t0

2KIC
n

(n  2)  v0  (Y  )n
ai,d (Pf ,0 ,m0 )

2n

2










1

n

  (18) 

= Strength Semi-Probabilistic  

The final glass strength equation illustrated by 
equation (18) is thus reached by using the 
probabilistic parameters ai,d (Pf , 0 , m0) defined by 
(16) together with the deterministic strength 
criterion described by (12). It can be affirmed that 
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the present criterion belongs to the so-called semi-
probabilistic safety verification processes (level 1), 
where t0 is arbitrarily chosen and KIC, n, Y, thanks to 
their low statistical spread [4], can be technically 
characterized by constant values. As demonstrated 
in [3], by numerical solution stability test, the 
variations of other parameters do not influence 
significantly the solution of equation (18) which 
exhibits a stable behaviour. In Design Crack 
Method, the failure probability is directly contained 
in (16) and the aspects linked to glass material 
characteristics come into play by the parameters  0 
e m0 obtained by Haldimann in [2], statistically 
analyzing a large number of failure tests by L.P.M 
changing some main factors such as geometry, 
environmental conditions, load shape and load 
increasing velocity. For this reason Haldiman’s 
values 0 and m0 are characterized by the highest 
reliability level and they will be adopted for the 
following numerical applications. 

5. NUMERICAL APPLICATIONS 

5.1 Existing Methods 

In [5,3] are presented the results of a numerical 
comparison performed, both for short duration (60s) 
and long duration (50 years) load time-history, on 
the most commonly used criteria of glass strength 
as Life Duration Theory, Crack Growth Model, 
Glass Failure Prediction Model, Modified Crack 
Growth Model, Sedlacek’s model. The choice of 
two very different loading times was necessary 
since glass is very sensitive to the so-called Static 
Fatigue effect. Most of existing methods, as L.D.T 
and C.G.M., show a good agreement with reference 
values for short time-history but are not able to 
describe the glass strength behaviour subjected to 
long duration stress field. Numerical results show 
also that the G.F.P.M does not provide safety values 
for either long or short time loading. In spite of that, 
this method is still adopted by some national 
standards like the American ASTM E 1300 and the 
Canadian CAN 12-20. The Sedlacek’s calculation 
model gives stress and Pf values similar to the 
reference ones. The assessment process is 
performed by transforming the real service 
condition of a generic glass element into an 
equivalent standard laboratory test [6,7] by means 
of a set of coefficients whose knowledge and 
reliability is implicitly assumed [8].  

 

Table 1 : D.C.M. - Numerical Applications – [5,3] 

n° Num.Applicat. Design Crack 
Method 

Reference 
Values 

1.1 max  (60 s) 21.76 MPa 20.3 Mpa 

1.2 max  (50 years) 8.27 MPa 8.12 Mpa 

2.1 Pf  (60 s) 4.122 x 10-3 8 x 10-3 

2.2 Pf  (50 years) 6.734 x 10-3 8 x 10-3 

3 bB,A0   42.24 MPa 45 MPa 

4 max (10-10s ≈0) 34.68 MPa inerth34.68 

MPa 

5.2 Design Crack Method 

Under the same service conditions of restrains, 
geometry and environment used in paragraph 5-1, 
some  simple  numerical  applications  of  the  new 
D.C.M. have been carried out with the results 
summarized in Table 1. We also developed a 
numerical simulation of the standard double-ring 
test in application n°3 while in application n°4 the 
numerical convergence of the method to the inert 
strength acr e cr  was controlled, for an extremely 
high load application rate, by numerically solving 
expression (8) instead of (10). 

5.3 Elementary numerical examples 

Each numerical value assumed in these examples 
has been found in technical literature, and can be 
improved or changed in order to reach better 
method calibration, achieving more accurate and 
experimentally validated results. Therefore the 
following numerical examples were developed only 
to provide an explanation as clear and simple as 
possible of the Design Crack Method. 

Constant uniform tensile stressed glass plate 

Let’s suppose (action side) a constant uniform 
tensile stress about 8 Mpa of 1 hour equi-damaging 
duration, net of compressive tempering stress. As 
we have seen before, fixing the maximium value of 
Pf linked to the minimum safety level that you want 
to guarantee (fixed by Eurocodes), we easily obtain 
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the design crack value ai,d  0,189mm . Now 

choosing the reference duration of strength (for 
example 1 hour) we obtain the one-hour-resistance: 

max,t0


1

3600s
 8,21 107 ai,d

7





1

16
                 

max,t0
 10.604MPa                    (19) 

This value does not represent the failure tensile 
stress. Assuming this value for glass design means 
to 230ea s far from failure as fixed Pf values 
gaurantees. Therefore the safety semi-probabilistic 
inequality will be: 

 t0

max,t0


8MPa

10,604MPa
 0,754  1  (20) 

Constant uniform tensile stressed glass plate – 
different reference strength duration 

If we want to investigate different reference 
strength of duration t1, according to (11), we have 
just to multiply by:  

 t0 t1 1/16
  (21) 

More than one time-history load of different 
duration 

In case of load combination on glass structures we 
must talk about cumulative damage instead of 
instant load combination, because of the presence of 
Static Fatigue. Therefore for instance in the case of 
three different load time durations, choosing an 
arbitrary duration t0, we achieve by (13) the 
equivalent stress: 

 t0


1

t0

1
16  t1   2

16  t2   2
16  t2 









1

16

 (22) 

Making a numerical example, in the case of 
constant stress 1 = 1,0 MPa of duration t1 = 50 
years, costant stress 2 = 3,0 MPa of duration t2 = 1 
year and constant stress 3 = 10,0 MPa of duration 
t3 = 10 minutes, arbitrary fixing the reference 
duration, t0 = 1 hour, we obtain the equidamaging 
costant stress: 

t0 = 8,941 MPa   of duration t0 = 1 hour 

Obviously a generic time history can be subdivided 
in tecnically constant intervals. 

Non uniform tensile stress field 

Dismissing any allowable-stress approach, as 
defined by Eurocode guideline, defining A0 as the 
surface of the reference glass speciments used for 
the laboratory determination of statistical surface 
damage rate parameters, in the case of glass plate of 
A=1,00m2 with A1=0,05 m2  tensile-stressed by 1 
= 20,0 Mpa, A2=0,35 m2 by 2 = 10,0 Mpa and 
A3=0,60 m2 by 3 = 5,0 Mpa, is possible to 
calculate by (14) the equidamaging uniform stress: 

 
1

A0

1
9,25  A1   2

9,25  A2   3
9,25  A3 









1

9,25

           
  14,49MPa                  (23) 

Obviously a generic surface tensile stress field, 
obtained for instance by F.E.M. analysis, can be 
subdivided in tecnically uniformly tensile stressed 
areas (Fig. 3). Therefore it is possible to take into 
account the different safety level of two glass 
element with the same maximum tensile stress but 
with a completly different tensile stress field, 
unattainable with a deterministic allowable-stress 
approch. This safety verification process can lead to 
no-negligible economical consequences in terms of 
material amount used (thinner glass elements).  

 
Fig 3 : The equidamaging uniform stress 

As can be seen, this simple calculation takes also 
into account the different failure stress between 
similar glass elements with different surface values 
A0 and A1. This phenomenon is called size effect 
and takes into account the obviously higher 
probability of a larger glass element to contain a 
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deeper crack because of the random cracks 
distribution, by the following expression:  

se  A0 A1 1/ 9,95
   (24) 

6. CONCLUSION 

The present panorama of glass strength criteria that 
can be applied in the field of architectural glass 
structures is still far from being simple and 
homogeneous. Despite the wide variety of existing 
calculation models, none of them are preferred by 
glass designers or researchers since some methods 
are usable only for simple geometries and standard 
constraint set ups, while others can be applied to 
any element and service condition but are difficult 
to use due to their high calculation complexity.  On 
the other hand, some other methods demonstrated to 
be totally inadequate because of their lack of 
sufficiently safe results.  

With the new failure prediction method proposed in 
this paper we tried to develop a user-friendly tool 
while maintaining at the same time the precision of 
the most rigorous methods but avoiding their high 
calculation burden. This has been done with the aim 
of supporting structural engineers when tasked with 
designing glass structures. This aim has been 
pursued through the adoption of a reliable, easy to 
understand deterministic model, already used by 
designers, together with the simplified version of 
the more accurate glass strength model developed 
by Haldimann.  

The new method, called Design Crack Method, is 
free from any empirical formulation. The crucial 
assessment parameter is a crack’s depth, called 
Design Crack, which is independant on time and  
takes into account all the main factors that 
statistically govern the strength of glass during 
time, such as the static fatigue and the stress 
concentration at the apex of the surface flaws.  

The great sensitivity of glass strength on the 
sequence and duration of external loading 
highlights the importance of defining significant 

stress time-history as standard loading conditions, a 
problem that could be solved within the frame of 
Eurocode activities. 
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