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Summary 
In order to assess safety levels in glass structures a scattered and inhomogeneous variety of mostly 
complicated resistance criteria is presently available, very often requiring specially developed 
softwares. For this reason engineers who wants to assess with reliability the actual safety level of 
glass structures of relevant economical importance are still obliged to undertake expensive 
experimental tests. 
In the attempt to overcome this problem, it was formulated a new semi-probabilistic failure 
prediction method called "Design Crack Method” (DCM), which is a compromise between the 
necessity to accurately model the complex mechanical behaviour of glass at breakage and the need 
to reduce the analytic complexity of the calculations. On the basis of Linear Elastic Fracture 
Mechanics, such aim has been reached in the present work by defining a new quantity called Design 
Crack, characterized by a mathematical expression that depends only on the probability of failure 
and on the surface damaging level. 
The proposed method, which is in accordance with the basic principles of the Structural Eurocodes, 
allows to predict glass lifetime taking into due account the influence of parameters like the surface 
extension and the loading time-history of  the structural element. The results obtained in some 
applications with the D.C.M. method have been numerically compared in this paper with those of 
the existing most frequently used theoretical methods.  
 
Keywords:  

glass strength, design crack, fracture mechanics, static fatigue, surface flaws, life time, 
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1  Introduction 
 

Glass is increasingly used in modern Architecture to resolve non secondary structural tasks.  
As a result there has risen an urgent demand for a reliable, theoretical method to perform 
engineering assessments of the remaining lifetime in glass structure. 
The availability of such a method would permit a safe design of glass structures and the prediction 
of their mechanical behaviour even if, like presently, the data base of experimental results obtained 
on full scale structures is not yet sufficiently extensive. 
The peculiar sensitivity of glass to surface imperfections, the absence of plasticity and phenomena 
like the so called “static fatigue” for example and the diminished resistance of the material to long 
term loads prevents the use of the traditional calculation methods that apply for other building 
materials. 
Also standard safety assessment procedures specifically developed for windows cannot be 
employed for glass beams or glass floors because window glasses must prevalently face short time 
loadings such as wind gusts. 
The first scientifically consistent, but engineering oriented, theoretical model of glass strength was 
formulated in 1972 by Brown [1] who called it “Load Duration Theory” (LDT). Brown combined 
the static fatigue theory of Charles & Hillings [2] with the concept of failure probability expressed 
by Weibull [3]. 
In 1974 Evans [4] developed the “Crack Growth Model” (CGM) on the basis of the principles of 
Linear Fracture Mechanics. This method makes use of the empirical description of the sub-critical 
propagation of cracks (deduced from the experimental relationship between crack growth speed and 
stress intensity factor KI) together with the Weibull failure probability concept under the hypotheses 
that in all surface micro cracks a sub-critical crack growth takes place no matter how little their 
stress intensity factor KI is. 
Between 1980 and 1984 Beason and Morgan formulated the “Glass Failure Prediction Model” 
(GFPM) [5] devoted to the safety assessment of rectangular glass plates simply supported along 
their borders. 
Here also the static fatigue theory of Charles & Hillings is used together with the Weibull concept 
of failure probability. Calculated stresses include geometrical non linearities caused in thin plates 
by large deflections. 
The GFPM constitutes the theoretical fundament of Canadian Standard CAN/CGSB 12.20-M89 and 
of ASTM 1300-04. 
Nevertheless, Fisher-Cripps & Collins [6] demonstrated in 1994 that the GFPM was not able to 
predict glass cracks under short time not under long time loads. However, the CGM also 
demonstrated a lack of capability of predicting fractures under long time loads. In order to obviate 
this problem, the same Authors introduced in CGM an additional, experimentally based condition 
which states that any crack growth occurs if the KI  factor is less than a limit value called Static 
Fatigue Limit. The new approach was called Modified Crack Growth Model (MCGM) [6]. 
Between 1995 and 1999 Sedlacek and Others [7] developed an engineering method to check 
structural safety in glass structures based on Weibull failure probability and on Linear Fracture 



 
 

 

Mechanics. The final verification expression obtained by Sedlacek is formally similar to the Miner 
rule of progressive damaging, commonly used by designers to assess the remaining fatigue life of 
steel structures. 
In 2001 Shen [8] and Siebert [8] proposed their own versions of Sedlacek method, both not very 
different from the original formulation and giving comparable results.   
The Sedlacek approach is presently at the basis of Eurocode prEN 13474-3. 
In the same year Porter [10] elaborates the Crack Size Design (CSD) where he defines a “design 
crack”, i.e. a maximum design depth  that surface cracks, supposed uniformly distributed on a glass 
pane, may reach before failure. 
 

In 2006 Haldimann gave an important contribution to the solution of this problem with his Lifetime 
Prediction Model (LPM) where he avoids the introduction of equivalent quantities but calculates 
directly the failure probability of a glass element starting from the probability distribution of its 
defects and from the deterministic knowledge of loading time-history [11] . 
Devigili in the same year [12] removed also the conceptual limitation, in Haldimann’s theory, of the 
deterministic definition of the time history by introducing the hypothesis that the random properties 
of the surface micro-defects and of the loading time histories can be described by Markov’s 
probability distributions. 
The results appear very rigorous but the associated calculation difficulties prevent the application of 
Devigili’s method for current engineering purposes. 
In this paper we tried to formulate a method for extending LPM but maintaining at the same time a 
moderate level of analytical difficulty in order to let its application remain possible also for normal 
design activities. 
 

2  Basic Concepts about the Mechanical Behaviour of Glass  
 

Every glass surface, although apparently intact, is inevitably affected by microscopic randomly 
distributed cracks. When the glass element is subjected to mechanical stresses, high stress 
concentrations occur at the tip of the micro cracks which can not be plastically redistributed because 
of the amorphous crystalline structure of the material, lacking in preferential plastic-flow plans. 
This peculiar feature causes the typical brittle fractures that characterize this material. 
 

The fracture resistance of damaged elements can be analytic described by the principles of Linear 
Elastic Fracture Mechanics. For this reason Irwin [13] introduced the Stress Intensity Factor (K), in 
order to describe the behaviour of brittle materials damaged by a single flaw placed perpendicularly 
to the stress direction (opening mode I): 

 

 
(2-1) 

Where : 
 

• Y - Shape factor, that depends on flaw’s geometry and dimension; 



 
 

 

• σ(t) -  Time-history  of the tensile stress near to the crack edge; 
• a(t) - Time-history of crack depth. 

 

Failure occurs when the propagation of the crack becomes unstable; that happens when: 
 

 
(2-2) 

KIC represents the Critical Stress Intensity Factor which depends only on the kind of material and 
can be usually considered technically constant because of its low statistical spread. Substituting (2-
2) in (2-1) easily allows to obtain the acr e σcr analytic expressions, respectively representing the 
crack depth and the stress intensity able to induce unstable crack propagation. This pair of values 
identifies the so-called “inert strength”. 
 

The graph of Fig. 2-1 shows, according to the K-factor, the flaw propagation velocity of a glass 
element subjected to constant stress during time and immersed in a humid environment.  
 

Although in section I the K value is 
much lower than KIC, a slow sub-
critical growth of flaws depth occurs on 
the glass surface which gradually 
reduces the inert tensile glass strength 
over time. This phenomenon is known 
as static fatigue and plays one of the 
main roles in theoretically determining 
the ultimate strength of glass structures. 
 

Moreover, the only part of Fig. 2-1 that 
provides a significant contribution to 
the design life of a crack, which is 
submitted to stress intensification 
during time, is the section I because the 
failure of the glass plate occurs almost 

instantly when section III is reached. As 
shown in Fig.2-1, the v-K relation is 

represented by a constant slope curve on a bi-logarithmic plot and it can be analytically described 
by the following differential equation: 

 

(2-3) 

n being the curve’s slope in section I and v0 the propagation velocity when K = KIC . Both n and v0 
are generally dependent on relative humidity rate, temperature, pH and stress intensity. 

Fig. 2-1 – υ  versus KI  



 
 

 

It can be easily argued that the theoretical failure prediction of glass elements subjected to tensile 
stress histories and afflicted by unavoidable surface flaws is rather complex and highly dependent 
on the following factors: 
 

• Environment conditions; 
• Surface damaging rate; 
• Tensile stress history on the glass surface during time; 
• Element shape and restrains; 
• Presence of residual stress induced by tempering processes. 

 

3  Haldimann’s Probabilistic Method: the Lifetime Prediction Model 
 

At present, the most advanced prediction model of strength in glass element seems to be the 
Lifetime Prediction Model formulated by M.Haldimann in which he assumes the following 
hypothesis: 
 

• The crack depth is a random variable; 
• All glass elements contain a large number of flaws; 
• The life of the entire element  coincides with that of the single worst defect ; 
• Cracks do not influence each other; 
• Generic flaw positions and orientations have the same probability of occurrence; 

 

Haldimann also demonstrates that the crack opening mode I mainly affects failure probability (Pf) 
and at last he finally finds the following general expression of Pf that describes the life-time of a 
glass element of whatever shape, submitted to sub-critical cracks’ growth and to a generic time and 
space variable stress-history : 
 

  

(3-1) 

Where: 
 

• A is the surface area of the glass element ; 
• θ0 and m0 are statistical parameters, related to the Weibull distribution, that describe the 

damage rate of the surface. They can be determined by experiments and are material 
intrinsic properties, not dependant on the type of laboratory tests. 

• A0 is the reference surface of the element used to obtain θ0 and m0 ; 



 
 

 

•   is an expression related to specific parameters of the material, 

usually characterized by constant values, defined by Linear Elastic Fracture Mechanics 
and by the Static Fatigue differential equation.   

 

The (3-1) is therefore related, by means of a probabilistic approach, to the parameters θ0 and m0 
which are characterized by a clear physical meaning. Restrictive assumptions are not stated about 
element shape, load or stress time-history and space variability, constraints and damaging surface 
condition. The only conceptual limitation of the Lifetime Prediction Model is that loads are 
assumed to be deterministic variables. 
 

The analytical complexity expression (3-1) make it not suited for current engineering oriented 
design activities. For this reason, Haldimann himself suggested a simplified version of it by 
introducing the following simplifying but conservative assumptions: 
  

• The existence of the threshold stress intensity factor Kth can be ignored; 
• It is assumed that the surface stress field is characterized by equi-biaxial tensile 

stresses σ1 = σ2; 
• The Brown’s Integral is assumed to apply (see paragraph 4). 

 

After some manipulation, expression (3-1) finally reduced to the following simplified expression of 
the failure probability (the meaning of  is described in paragraph 5 by expressions (5-1) and (5-
2): 

 
(3-2) 

Where: 

 

(3-3) 

 

(3-4) 

Then, once selected a given Pf for the glass tensile strength, a failure criterion can be written in the 
following form:  

Stress   =      =   Strength probabilistic 

(3-5) 

Haldimann’s Lifetime Prediction Model has been adopted as the theoretical starting point for the 
development of the new analytic model proposed in this paper, which has been called Design Crack 
Method and is described in the next paragraph 5.  



 
 

 

 

4  Deterministic Model: Single Crack Life Time 
 

The (2-1) and (2-3) describe glass mechanical behaviour during time of an ideal perfect element 
only damaged with a single flaw, referring respectively to the Linear Elastic Fracture Mechanics 
and to the static fatigue phenomenon. Let us suppose that the general surface stress time-history is 
uniform over the surface and acting for T-seconds. If the initial crack size is also known, 
substituting (2-1) in (2-3)  yields to the following integral-differential equation with separable 
variable: 
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From (4-1), assumed in accordance with Haldimann [11] that n e v0 are constant with time, 
integrating between time t = 0 , when the crack depth is ai , and a generic time t , when the crack 
depth is af , we obtain the expression (4-2) describing the crack evolution at the generic instant t as a 
function of the load-history: 

 

(4-2) 

Formula (4-2) can be expressed also in the following way: 
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Taking into account of (2-2), formula (4-3) can be rearranged into (4-4) which states that a brittle 
unstable crack propagation does not occur if the following condition is satisfied: 
 

 

(4-4) 



 
 

 

Finally, assuming the conservatory hypothesis that ai <<< acr (as demonstrated by Haldimann [11] 
for common load application durations), the quantity in square brackets approaches 1 and therefore 
it is possible to separate the variables obtaining the following inequality where the damage caused 
by external loading is compared with the maximum damage that glass can withstand: 
 

       
(4-5) 

If we rewrite (4-5)  in an explicit way we obtain: 
 

 

(4-6) 

where the first part of (4-6) is the well known Brown’s Integral. 
Therefore, if we know a generic stress time-history lasting T-seconds, by arbitrarily choosing the 
value of t0 reference time, it is possible to calculate by Brown’s Integral the equivalent constant 
tensile stress that induces onto the glass surface, during t0 , the same damage as the real stress 
history variable over the time T: 

 

(4-7) 

With position (4-7) expression (4-6) takes the form: 
 

                 Stress    =      =   Strength deterministic 

 (4-8) 



 
 

 

5  The Design Crack Method ( DCM ) 

5.1 Basic idea  
 

In paragraph 4  we have briefly recalled the deterministic model of 
the mechanical behaviour of an ideal perfect glass plate, only 
containing a single flaw with a known initial depth ai, submitted to 
a uniform tensile stress σ(t) generically variable during a time T. 
 

The two main advantages of this model consist of its analytical 
simplicity and of the reliability of the solution, but on the other 
hand it does not take into account the randomness of the main 
parameters affecting the problem of glass tensile strength during 
time. 
 

In order to overcome this problem, it was thought to search the 
analytical expression of a single “Design Crack” having such a 

depth ai,d  able to induce the same damaging rate of the real glass 
element subject to a random distribution of cracks over its surface. 

It was also decided to pursue this goal analytically, without using any empirical coefficient or 
assumption.  
In the following, σt0(x,y) represents the constant tensile stress of duration t0 equivalent to the real 
stress history σ(t,x,y) generally variable during time T, while  represents the uniformly distributed 
and constant over time t0 tensile stress acting across the element of area A, equivalent to (in terms of 
damage) any generic σ(t,x,y) (see also [14]). 
Analytically : 

    

(5-1) 

 
(5-2) 

In (5-1) and (5-2), k is the number of approximately constant time-intervals and q is the number of 
surface regions subject to approximately uniform surface tension, where obviously the integrals are 
extended only to decompressed areas, referring to surface stress field net of compression residual 
stresses induced by tempering processes and external pre-stressing. 
 

Fig. 5-1 – Basic Idea [14]  



 
 

 

5.2 Analytical Formulation of the Design Crack Method 
 

The problem is analytically stated by equating the material strength expressed in a deterministic 
way by the second term of equation (3-5) to the probabilistic strength expressed by equation  (4-8): 
 

       =       
(5-3) 

Realising all terms of (5-3) we obtain: 

 

   (5-4) 

It can be seen that the time-term t0 can be eliminated and therefore, after some re-arranging, we 
achieve the final time-independent expression of the Design Crack ai,d ,  
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(5-5) 

Combining (5-5) with (4-5), we define at first the failure criterion in terms of damage: 
 

    ≤     
(5-6) 

After some re-arrangement, the preceding failure criterion related to a glass element submitted to 
any stress time-history over a time interval can be written in more common terms of tensile stresses: 
 

Stress   =  
 
= Strength Semi-Probabilistic 

(5-7) 

The final glass strength equation illustrated by equation (5-7) is thus reached by using the 
probabilistic parameters ai,d (Pf , θ0 , m0) defined by (5-5) together with the deterministic strength 
criterion described by (4-8). 
It can be affirmed that the present criterion belongs to the so-called semi-probabilistic safety  
verification processes (level 1), where t0 is arbitrarily chosen and KIC, n, Y , thanks to their low 
statistical spread [15], can be technically characterized by constant values. As demonstrated in [14] 
the variations of other parameters do not influence significantly the solution of equation (5-7) which 
exhibits a stable behaviour.  
 

In Design Crack Method, the failure probability is directly contained in (5-5) and the aspects linked 
to glass material characteristics comes into play by the parameters  θ0 e m0 obtained by Haldimann 



 
 

 

in [11], statistically analyzing a large number of failure tests by L.P.M changing some main factors 
such as geometry, environmental condition, load shape and load increasing velocity. For this reason 
Haldiman’s values of θ0 e m0 are characterized by the highest reliability level [14] and they will be 
adopted for the following numerical applications. 
 

The following scheme summarizes the developing process of Design Crack Method, based on the 
comparison between the simplified probablilistic Haldiman’s method and the deterministic failure 
prediction of a single crack analyzed by Linear Elastic Fracture Mechanic: 
 

 

 
 

Fig. 5.2 – Design Crack Method Developing Process  [14] 
 



 
 

 

6  Numerical Applications 

6.1 Existing Methods 

6.1.1 Comparisons 
 

This paragraph presents the results of a numerical comparison performed today on the most 
commonly used criteria of glass strength [14]. The comparison is not immediate because some 
authors choose the failure probability as the most relevant quantity for the prediction of the safety 
level, others use the maximum uniform out-plan load, or the allowable stress, and finally other 
authors transform the service condition to an equivalent standard laboratory test. 
 

In order to make the comparisons possible it was necessary to restate and homogenise to a unique 
approach, all the different calculation methods. The rearranging was made in [14] following two 
ways: the first way was to deduce from each method the failure probability when applying the same 
constant uniform tensile stress. Inversely, the second way consisted in calculating for each method, 
given a constant failure probability, the associated maximum constant tensile stress. 
 

The glass element object of the present numerical application is a square plate 1m x 1m, 4mm thick, 
uniformly loaded, simply supported at the edges (free edges rotations), subjected to two different 
stress time-histories: short duration (60s) and long duration (50 years). The choice of two very 
different loading times was necessary since glass is very sensitive to the so-called Static Fatigue 
effect. The reference values of tensile stress and failure probability used in the comparison are 
compiled in Table [14]. 
 

Table 6-1  - Reference values [14] 

 Short Time (60s) Long Time (50 years) 
σmax 20.3 MPa 8.12MPa 
Pf 8x10-3 8x10-3 

 

Instead of comparing single result values, it was decided that it would be more significant to make a 
comparison between the different distributions of the failure probability as a function of the applied 
uniform tensile stress for each of the two loading times (see Figs. 6-1; 6-2). 
In the following tables bolded values resulted in accordance with reference values . 
 



 
 

 

6.1.1.1   Pf  - Short time duration 
 
  

6.1.1.2   Pf  - Long time duration 
Input Long time 
σto 8.12 MPa 
t0  50 years 
UR 50% 
T 25 °C 
Sv 0.45 
nv 18.1 

 
 Model Pf 
1 L.D.T. 0.015 
2 C.G.M. 0.089 
3 G.F.P.M. 1.060 x10-3 
4 M.C.G.M. 6.753 x10-3 
5 Sed. 7.724 x10-3 

6.1.1.3   Stress – Short time duration 
Input Short Time 
Pf 8x10-3 

t0  60 s 
UR 100% 
T 25 °C 
Sv 5 
nv 16 

 
 Model σ to [MPa] 
1 L.D.T. 21.119  
2 C.G.M. 19.613 
3 G.F.P.M. 32.942 
4 M.C.G.M. 21.174 
5 Sed. 20.664 

 Model Pf 
1 L.D.T. 6.092x10-3 

2 C.G.M. 5.621 x10-3 
3 G.F.P.M. 2.344 x10-4 
4 M.C.G.M. 5.621x10-3 
5 Sed. 3.091 x10-3 

Input Short time 
σto 20.3 Mpa 
t0  60 s 
UR 100% 
T 25 °C 
Sv 5 
nv 16 

 
Fig. 6-1 - Pf function vs constant stress  – Short Duration – [14] 

 
 

Fig. 6-2  - Pf function vs constant stress– Long Duration – [14] 

 
 

Fig. 6-3  – Constant Stress vs Pf  – Short Duration [14] 



 
 

 

 

6.1.1.4   Stress – Long time duration 
 

Input Long Time 
Pf 8x10-3 

t0  50 years 
UR 50% 
T 25 °C 
Sv 0.45 
nv 18.1 

 
   
 
 
 
 
 
 

6.1.2 Comments 
 

The following main remarks can be deduced from the numerical results: 
- Brown affirms that his L.D.T 
calculation method can be applied only 
for short duration loads, which is 
confirmed by the graphs of the preceding 
figures.  Indeed that was the reason why 
the C.G.M. was modified into the 
M.C.G.M., which shows a trend of Pf that 
can be described by a bilateral straight 
line in a bi-logarithmic graph, as shown 
in Fig. 6-5. After a certain time, 
depending on the stress intensity, the 
C.G.M’s curve is interrupted and replaced 
with a new almost zero-slope line along 
which the failure probability does not 
increase. Thanks to this modification, the 

long duration solution also belongs to intervals of Pf with a magnitude of 10-3 instead of 10-1. 
- Our numerical results show also that the G.F.P.M does not provide safety values for either long or 
short time loading. In spite of that, this method is still adopted by some national standards like the 
American ASTM E 1300 and the Canadian CAN 12-20 since its application leads to results in 
accordance to reference values. However, it can be demonstrated [15] that this is surprisingly and 
solely due to compensating errors contained in some formulas. 

 Model σ to 
1 L.D.T. 7,413 
2 C.G.M. 4,769 
3 G.F.P.M. 10,715 
4 M.C.G.M. 8,311 
5 Sed. 8,198  

 
Fig. 6-4 - Constant Stress vs Pf  – Long duration – [14] 

 
Fig. 6-5  [14] – Trand of Pf  over time – constant stress 

 



 
 

 

The Sedlacek’s calculation model gives stress and Pf values similar to the reference ones, both for 
long and short loading time-histories. The assessment process is performed by transforming the real 
service condition of a generic glass element into an equivalent standard laboratory test, the so-called 
double ring test [15, 16], by means of a set of coefficients whose knowledge and reliability is 
implicitly assumed [7].  
- In some of the examined existing methods, it was not clearly defined which was the extension of 
the surface to be introduced in the different formulas. In our opinion, since just tensile stressed 
opening cracks increase the failure probability, only the decompressed surfaces should be taken into 
account. 
 

6.2 Design Crack Method 
 

Under the same service conditions of restrains, geometry and environment used in paragraph 6-1, 
some simple numerical applications of the new D.C.M. have been carried out with the results 
summarized in Table 6-2. 
Also developed was a numerical simulation of the standard double-ring test in application n°3 while 
in application n°4 the numerical convergence of the method to the inert strength acr e σcr  was 
controlled, for a extremely high load application rate, by numerically solving expression (4-4) 
instead of (4-6) . 
A very good agreement between predicted and reference values can be observed both for short and 
long time loading applications. 
 

Table 6-2 : D.C.M. - Numerical Applications – [14] 

 
 
 
 
 
 
 
 
 
 
 
 
 

n° Numerical 
Applications 

Design Crack Method Reference Values 

1.1 σmax  –  60 s 21.76 MPa 20.3 MPa 

1.2 σmax  –  50 anni 8.27 MPa 8.12 MPa 

2.1 Pf  -  60 s 4.122 x 10-3 8 x 10-3 

2.2 Pf  -  50 anni 6.734 x 10-3 8 x 10-3 

3 σbB,A0   42.24 MPa 45 MPa 

4 σmax – 10-10 ≈ 0 s 34.68 MPa σinerth = 34.68 MPa 



 
 

 

7  Conclusion 
 

The present panorama of glass strength criteria that can be applied in the field of architectural glass 
structures is still far from being simple and homogeneous. Despite the wide variety of existing 
calculation models, none of them are preferred by glass designers or researchers since some 
methods are usable only for simple geometries and standard constraint set ups, while others can be 
applied to any element and service condition but are difficult to use due to their high calculation 
complexity.  On the other hand, some other methods demonstrated to be totally inadequate because 
of their lack of sufficiently safe results.  
With the new failure prediction method proposed in this paper we tried to develop a user-friendly 
tool while maintaining at the same time the precision of the most rigorous methods but avoiding 
their high calculation burden. This has been done with the aim of supporting structural engineers 
when tasked with designing glass structures. 
This aim has been pursued through the adoption of a reliable, easy to understand deterministic 
model, already used by designers, together with the simplified version of the more accurate glass 
strength model developed by Haldimann.  
 

The new method, called Design Crack Method, is free from any empirical formulation. The crucial 
assessment parameter is a crack’s depth, called Design Crack, which is independant on time and  
takes into account all the main factors that statistically govern the strength of glass during time, 
such as the static fatigue and the stress concentration at the apex of the surface flaws.  
 

The great sensitivity of glass strength on the sequence and duration of external loading highlights 
the importance of defining significant stress time-history as standard loading conditions, a problem 
that could be solved within the frame of Eurocode activities. 
 

8  Appendice A: Numerical Stability of the Solution  
 

Some tests have been performed to control the numerical stability of the Design Crack Method. In 
these tests the geometry of the glass plate and other service conditions have been taken similar to 
those in paragraph 6 for 60s load duration. 
As already described in Chapters 2, the values of KIC, n and Y can be assumed technical constants 
[15] during design and verification processes. The following graphs show therefore the trend of the 
Design Crack Method’s solution as a function of the remaining parameters. 

 



 
 

 

 
Fig. 8.1.a – Failure uniform tensile stress vs  Pf  [14] 

 

 
Fig. 8.1.b – Failure uniform tensile stress  vs  m0  [14] 

 



 
 

 

 
Fig. 8.1.c – Failure uniform tensile stress  vs  v0  [14] 

 

 
Fig. 8.1.d– Failure uniform tensile stress  vs  θ  [14] 
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